Инжектор на бензине работает. Основные датчики инжекторного двигателя. Как устроен и работает инжектор

Двигатель транспортного средства представляет собой сложную систему, функционирующую слаженно в различных условиях. Еще не так давно машины оснащались карбюраторами, но данная технология несколько устарела, ее успешно заменил инжектор. В оснащенном этим устройством двигателе питание осуществляется инжекторной подачей. Такая технология существенно отличается, устанавливается на машинах, использующих бензин.

Порядок работы

Да, на смену карбюратору пришел инжектор. Он на порядок эффективней своего предшественника. Таким моторам предписывается улучшенный разгон, экономия топлива, неплохие экологические параметры. Это достигается без ручного регулирования и иных манипуляций.

Принцип действия этого устройства в топливной системе основан на подаче бензина, смешанного с воздухом, сквозь специальную форсунку. Их располагают в коллекторе впуска, систему называют моновпрыском. Из-за своих недостатков она успела несколько отойти в прошлое.
Второй вариант расположение форсунок возле впускных цилиндрических клапанов. Этот вид системы называется распределенным впрыском.
Они могут находиться на головке цилиндра. Это прямой впрыск, который используется часто.

Топливо и воздух подаются сразу в камеру.
Система распределенного впрыска разделяется на несколько типов:

  • одновременный – имеющиеся форсунки горючее подают все вместе;
  • парно-параллельный – приоткрываются парами, на впрыск и на выпуск. Данный метод используют при запуске силовой установки;
  • фазированный – раскрывается перед впрыскиванием;
  • прямой – топливо-воздушная смесь впускается сразу в ресивер.

Чтобы происходили впрыски топлива, его подводит к распылению давление, создаваемое электрическим бензонасосом. Импульсные сигналы подаются бортовым компьютером. Протяженность импульса и партия бензина или солярки для каждого впрыска определяются по данным, которые поступают с датчиков читки информации функционирования мотора.

Работа машины заключается не только в движке и крутящем моменте, сюда следует добавить электроуправление от компьютера. Главный «мозг» оказывает влияние и на функции инжектора. Имеющиеся датчики считывают сведения о количестве горючего, скорости, сетевом напряжении, другие данные.
Контроллер обобщает всю информацию и начинает управлять приборами, регулируя подачу горючего.

Чтобы понимать, как он функционирует, следует знать его состав. Сюда входят:


Возможные неисправности

Инжектор вносит эффективность в работу силовой установки, помогает экономить бензин, помогает делать выхлопные газы более чистыми.
Но если форсунки начинают засоряться, то:

  • обороты мотора снижаются;
  • зажигание затрудняется;
  • набор скорости происходит медленней;
  • увеличивается расход топлива;
  • в выхлопах увеличивается уровень вредных компонентов.

В современных транспортных средствах имеются электродатчики, выдающие сведения на монитор приборной доски, чтобы водитель имел возможность уточнить неисправность, которую необходимо устранить.

Засорение устройства может быть вызвано бензином, в состав которого входят парафиновые частички и сложные химсоединения. При отключении мотора некоторое количество горючего остается в форсунке. От температуры оно начинает испаряться, парафин застывает. Он то и создает основное препятствие для подачи горючего.
Чтобы восстановить нормальную работоспособность, прибор следует прочистить. Можно воспользоваться компрессорным устройством и специальной промывочной жидкостью. Компрессор монтируется вместо насоса подачи топлива, начинает подавать растворитель в систему. Время процедуры будет зависеть от того, насколько сильны загрязнения форсунок. Если результат не достигнут, следует применить более кардинальный способ.
Чтобы уточнить результативность прочистки, следует выполнить анализ выхлопных газов, уточнить мощность двигателя и уровень падения показателя давления в инжекторе. Если все нормально, значит, очистка проведена успешно.

Второй способ сложнее, подразумевает наличие специальных навыков. Придется разбирать мотор и некоторые узлы машины. До такого состояния устройство рекомендуется не доводить.
Некоторые водители считают, что моноинжектор будет эффективней. Вопрос спорный, на расход топлива влияние не оказывается. Небольшое улучшение можно получить, если одновременно провести чип-тюнинг.

Инжектор (форсунка) – это элемент системы впрыска горючей смеси в двигатель транспортного средства. Иногда под понятием «инжектор» подразумевается вся система впрыска топлива.


Его предназначение – подача топлива дозами к двигателю, распыление топлива, приготовление воздушно-топливной смеси. Сегодня инжекторы устанавливают в системы впрыска двигателей большинства современных автомобилей, и бензиновых, и дизельных.

1. Виды инжекторов

Различают такие виды инжекторов по способу впрыска горючей смеси:

Электромагнитные.

Электрогидравлические.

Пьезоэлектрические.

Рассмотрим более детально каждый из видов.

Электромагнитный инжектор – обычно, такие инжекторы ставят на бензиновые двигатели (также и на те, что имеют систему непосредственного впрыска). Устройство этого типа инжекторов очень простое и включает сопло, электромагнитный клапан и иглу.

Процесс работы электромагнитного инжектора можно описать следующим образом. В нужный момент электронный блок подаёт напряжение на обмотку клапана. Создаётся электромагнитное поле, преодолевающее силу пружины и втягивающее якорь с иглой, что освобождает сопло. Потом производится впрыск топлива. Во время исчезновения напряжения, игла инжектора возвращается в исходное положение с помощью пружины.

Электрогидравлический инжектор – обычно, используют в дизельных двигателях (также в тех, которые оборудованы системой для впрыска Common Rail). Конструкция такого инжектора соединяет электромагнитный клапан, камеру управления, дроссели (впускной и сливной).

Электрогидравлические инжекторы работают на основе использования давления топлива во время впрыска и при его прекращении. По умолчанию клапан закрыт, а игла прижата к седлу давлением топлива на поршень. При этом впрыск не происходит, а давление на игле будет меньше давления, передаваемого на поршень. По сигналу из электронного блока открывается сливной дроссель, так как срабатывает электромагнитный клапан.

Топливо при этом течёт в сливную магистраль, а впускной дроссель не может быстро выровнять давление во впускной магистрали и камере управления. Из-за этого снижается давление на поршень. Что касается давления на иглу, то оно не меняется. Под действием такого давления игла поднимается и топливо впрыскивается.

Пьезоэлектрический инжектор – на сегодня это самый продвинутый прибор для впрыска топлива. Такой вид инжекторов устанавливают на дизельных двигателях с системой Common Rail. Они управляются с использование пьезоэффекта, основанном на том, что длина пьезокристалла меняется под напряжением.

Конструктивно пьезоэлектрический инжектор из пьезоэлемента и толкателя (переключает клапан и иглу в корпусе).

В основе работы этого вида инжекторов использован гидравлический принцип. В начальном положении игла за счёт давления топлива, посажена на седло. Когда на пьезоэлемент поступает сигнал, то его длина увеличивается, и он даёт усилие на толкатель , при чём происходит открытие клапана, и топливо идёт в сливную магистраль. Давление на иглу в верхней части падает, а за счёт давления в нижней части, игла поднимается и топливо впрыскивается. Количество топлива, которое нужно впрыснуть, определяется исходя из давления топлива в топливной рампе и длительности действия на пьезоэлемент.

Пьезоинжекторы срабатывают быстрее в четыре раза, нежели электромагнитные, что даёт возможность многократно впрыска в один цикл и точечной дозировки топлива.

Системы впрыска топлива в зависимости от количества инжекторов и мест подачи топлива подразделяются на такие виды:

Одноточечные (моновпрыск) – во впускном коллекторе предусмотрено всего один инжектор на все цилиндры.

Многоточечные (распределённые) – у каждого отдельного цилиндра присутствует индивидуальный инжектор, осуществляющий подачу топлива коллектору.

Непосредственные (прямого впрыска) – подача топлива осуществляется прямо в цилиндры при помощи инжекторов. Системы непосредственного впрыска дают самый лучший результат работы двигателя

2. Основные элементы инжекторной системы и принцип работы

Инжекторная система состоит из таких элементов:

Электрический бензонасос (осуществляет подачу топлива на инжектор).

Регулятор давления (даёт возможность поддерживать разницу в давлении на инжекторах и воздуха впускного коллектора).

Контроллер (делает обработку информации от разных датчиков и управляет системой зажигания и подачи топлива).

Датчики (передают контроллеру необходимую информацию для работы всей системы; в систему входят датчики детонации, температуры, коленчатого вала и т. д.). Инжектор (осуществляет впрыск топлива в двигательную систему).

Главными составляющими инжектора являются топливный фильтр, пружина, якорь, игла, штифт, электромагнитная обмотка, корпус, электрический контакт и уплотнительное кольцо. Самый важный элемент инжектора (форсунки) – сопло.

Рассмотрим принцип работы инжекторной системы.


Бензонасос создаёт давление и топливо, под этим давлением, подаётся на инжекторы. Клапан инжектора открывается и топливо попадает в коллектор (либо сразу в цилиндр, если впрыск прямой). Чем дольше клапан находится в открытом состоянии, тем большее количество топлива впрыскивается в цилиндр и, тем выше будут обороты двигателя. Длительностью открытия клапана управляет контроллер на основе информации, полученной из датчиков.

Эти датчики собирают информацию о всех параметрах работы двигателя – оборотах коленвала, температуре жидкости для охлаждения, расходе воздуха, скорости движения автомобиля , степени открытия дросселя, детонации, напряжении бортовой сети и других. Вся эта информация помогает выбрать самый оптимальный режим работы двигателя в любых условиях нагрузки.

За инжектором обязательно нужно ухаживать, чтобы он исправно работал. Во-первых, его регулярно нужно промывать (каждые 20-25 тыс. км), а во-вторых – заправлять автомобиль качественным бензином. Если долго не промывать инжектор, он может закоксоваться и тогда его вовсе придётся поменять. Содержание в топливе примесей и смол также не пойдёт на пользу инжекторам.

3. Краткая история инжектора

Принципы работы двигателя с инжекторной системой были известными ещё в конце 19 века, но ввиду сложной конструкции о таких двигателях долгое время не вспоминали.


Применение инжекторов в системах впрыска обусловил топливный кризис в 70-х годах и всеобщее внимание к окружающей среде в 80-х годах прошлого века. Карбюраторные двигатели выбрасывали в воздух очень много вредных отработанных веществ из-за сильного обогащения горючей смеси. Для уменьшения количества этих выбросов нужно было полностью менять двигательную систему.

Считается, что инжекторная система впрыска топлива родилась в 1951 году, когда корпорация Bosch установила такую систему на двухтактный двигатель Goliath 700 Sport. В 1954 году подобную систему установили на Mercedes-Benz 300 SL. А в 1967 году создали первый инжектор с электронным управлением.

Первые инжекторные двигатели были очень капризными и имели сложную механику. Зато такие отличались экологичностью и тяговитостью, а по своим характеристикам во многих аспектах превосходили карбюраторные системы.


Массовое же внедрение инжекторов началось с конца 70-х годов 20 века. Настоящий же «золотой век» инжекторов наступил в конце 20-го века с приходом электроники в автомобилестроение.

Сегодня двигатели с карбюраторными системами уже стали архаизмом. Современные транспортные средства оснащаются инжекторными системами впрыска топлива. Первые десять лет 21-го века почти завершили вытеснение карбюраторов в пользу инжекторов.

4. Плюсы и минусы инжекторов


Плюсы инжекторных систем:

Уменьшают расходы топлива благодаря правильной дозировке топлива.

Выхлопные газы с такими системами менее токсичны вследствие верно приготовленной воздушно-топливной смеси.

Повышают мощность двигателя на 8-10% (цилиндры наполняются более объёмно, а угол опережения зажигания установлен оптимально).

Система в автоматическом режиме корректирует параметры смеси при изменении нагрузок.

Не зависит от погодных условий.

Легко приводится в действие.


Минусы инжекторных систем:

Невысокая ремонтопригодность элементов системы в случае её поломки.

Высокая стоимость отдельных узлов системы и её ремонта.

Подписывайтесь на наши ленты в

Министерство образования и науки Российской Федерации

Сыктывкарский лесной институт филиал

Федерального государственного бюджетного образовательного учреждения

высшего профессионального образования

Санкт-Петербургского государственного лесотехнического университета

им. С.М.Кирова

Факультет ЛТФ

Кафедра АиАХ

Лабораторная работа № 1,2

Дисциплина: ТЭА

Тема: Система питания инжекторного двигателя.

Выполнил Артеева Т. П., гр. 141

Проверил Юшков А. Н., к.т.н.

Зав. кафедрой Чудов В. И., к.т.н.

Сыктывкар – 2011

Содержание Введение…………………………………………………………………………...3

    Устройство системы питания инжекторного двигателя…..…...................4

    Основные неисправности системы питания.……...………………………7

    1. Датчики………………………………………………………………….7

      Форсунки………………………………………………………………..9

      Бензонасос……………………………………………………………..11

    ТО системы питания………….………………..………………………….12

Введение

На сегодняшний день инжекторный двигатель практически полностью заменил устаревшую карбюраторную систему.

Инжекторный двигатель улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива и т.д.).

Инжектор позволяет длительное время соблюдать высокие экологические стандарты, без ручных регулировок, благодаря самонастройки по датчику кислорода.

Инжекторный двигатель. Основные достоинства.

Основные достоинства инжектора по сравнению с карбюратором: уменьшенный расход топлива, улучшенная динамика разгона, уменьшение выбросов вредных веществ, стабильность работы. Изменение параметров электронного впрыска может происходить буквально "на лету", так как управление осуществляется программно, и может учитывать практически большое число программных функций и данных с датчиков. Также современные системы электронного впрыска способны адаптировать программу работы под конкретный экземпляр мотора, под стиль вождения водителя, и т.п.

Инжекторный двигатель. Недостатки.

Основные недостатки инжекторных двигателей по сравнению с карбюраторными: высокая стоимость ремонта, высокая стоимость узлов, неремонтопригодность элементов, высокие требования к качеству топлива, необходимо специализированное оборудование для диагностики, обслуживания и ремонта.

Инжекторные системы питания двигателя классифицируются следующим образом. Моновпрыск или центральный впрыск - одна форсунка на все цилиндры, расположенная на месте карбюратора (во впускном коллекторе). В современных двигателях не встречается. Распределённый впрыск - каждый цилиндр обслуживается отдельной изолированной форсункой во впускном коллекторе. Одновременный - все форсунки открываются одновременно. Попарно-параллельный - форсунки открываются парами, причём одна форсунка открывается непосредственно перед циклом впуска, а вторая перед тактом выпуска.

  1. Устройство системы питания инжекторного двигателя

Рис.1. Схема подачи топлива двигателя с системой впрыска топлива

1 – форсунки; 2 – пробка штуцера для контроля давления топлива;3 – рампа форсунок; 4 – кронштейн крепления топливных трубок;5 – регулятор давления топлива; 6 – адсорбер с электромагнитным клапаном; 7 – шланг для отсоса паров бензина из адсорбера;8 – дроссельный узел; 9 – двухходовой клапан;10 – гравитационный клапан; 11 – предохранительный клапан;12 – сепаратор; 13 – шланг сепаратора; 14 – пробка топливного бака; 15 – наливная труба; 16 – шланг наливной трубы; 17 – топливный фильтр; 18 – топливный бак; 19 – электробензонасос; 20 – сливной топливопровод; 21 – подающий топливопровод.

Топливо подается из бака, установленного под днищем в районе задних сидений. Топливный бак ваз 2111 – стальной, состоит из двух сваренных между собой штампованных половин. Заливная горловина соединена с баком резиновым бензостойким шлангом, закрепленным хомутами. Пробка герметична. Бензонасос – электрический, погружной, роторный, двухступенчатый, установлен в топливном баке. Развиваемое давление - не менее 3 бар (3 атм).

Бензонасос ваз 2110 включается по команде контроллера системы впрыска (при включенном зажигании ваз 2112) через реле. Для доступа к насосу под задним сиденьем в днище автомобиля имеется лючок. От насоса по гибкому шлангу топливо под давлением подается к фильтру тонкой очистки и далее – через стальные топливопроводы и резиновые шланги – к топливной рампе.

Фильтр тонкой очистки топлива – неразборный, в стальном корпусе, с бумажным фильтрующим элементом. На корпусе фильтра нанесена стрелка, которая должна совпадать с направлением движения топлива.

Топливная рампа служит для подачи топлива к форсункам и закреплена на впускном коллекторе. С одной стороны на ней находится штуцер для контроля давления топлива, с другой – регулятор давления. Последний изменяет давление в топливной рампе – от 2,8 до 3,2 бар (2,8-3,2 атм) – в зависимости от разрежения в ресивере, поддерживая постоянный перепад между ними. Это необходимо для точного дозирования топлива форсунками.

Регулятор давления топлива ваз 2111, ваз 2112 представляет собой топливный клапан, соединенный с подпружиненной диафрагмой. Под действием пружины клапан закрыт. Диафрагма делит полость регулятора на две изолированные камеры – "топливную" и "воздушную". "Воздушная" соединена вакуумным шлангом с ресивером, а "топливная" – непосредственно с полостью рампы. При работе двигателя разрежение, преодолевая сопротивление пружины, стремится втянуть диафрагму, открывая клапан. С другой стороны на диафрагму давит топливо, также сжимая пружину. В результате клапан открывается, и часть топлива стравливается через сливной трубопровод обратно в бак. При нажатии на педаль "газа" разрежение за дроссельной заслонкой уменьшается, диафрагма под действием пружины прикрывает клапан – давление топлива возрастает. Если же дроссельная заслонка закрыта, разрежение за ней максимально, диафрагма сильнее оттягивает клапан – давление топлива снижается. Перепад давлений задается жесткостью пружины и размерами отверстия клапана, регулировке не подлежит. Регулятор давления – неразборный, при выходе из строя его заменяют.

Форсунки крепятся к рампе через уплотнительные резиновые кольца. Форсунка представляет собой электромагнитный клапан, пропускающий топливо при подаче на него напряжения, и запирающийся под действием возвратной пружины при обесточивании. На выходе форсунки имеется распылитель, через который топливо впрыскивается во впускной коллектор. Управляет форсунками контроллер системы впрыска. При обрыве или замыкании в обмотке форсунки ее следует заменить. При засорении форсунок их можно промыть без демонтажа на специальном стенде СТО.

В системе впрыска с обратной связью применяется система улавливания паров топлива ваз 2110. Она состоит из адсорбера, установленного в моторном отсеке, сепаратора, клапанов и соединительных шлангов. Пары топлива из бака частично конденсируются в сепараторе, конденсат сливается обратно в бак. Оставшиеся пары проходят через гравитационный и двухходовой клапаны. Гравитационный клапан предотвращает вытекание топлива из бака при опрокидывании автомобиля ваз 2111, а двухходовой препятствует чрезмерному повышению или понижению давления в топливном баке.

Затем пары топлива попадают в адсорбер ваз 2110, где поглощаются активированным углем. Второй штуцер адсорбера соединен шлангом с дроссельным узлом, а третий – с атмосферой. Однако на выключенном двигателе третий штуцер перекрыт электромагнитным клапаном, так что в этом случае адсорбер не сообщается с атмосферой. При запуске двигателя контроллер системы впрыска начинает подавать управляющие импульсы на клапан с частотой 16 Гц. Клапан сообщает полость адсорбера с атмосферой и происходит продувка сорбента: пары бензина отсасываются через шланг в ресивер. Чем больше расход воздуха двигателем, тем больше длительность управляющих импульсов и тем интенсивнее продувка.

В системе впрыска без обратной связи система улавливания паров топлива состоит из сепаратора с двухходовым обратным клапаном. Воздушный фильтр ваз 2111 установлен в передней левой части моторного отсека на трех резиновых держателях (опорах). Фильтрующий элемент – бумажный, при установке его гофры должны располагаться параллельно оси автомобиля. После фильтра воздух проходит через датчик массового расхода воздуха и попадает во впускной шланг, ведущий к дроссельному узлу. Дроссельный узел закреплен на ресивере. Нажимая на педаль "газа", водитель приоткрывает дроссельную заслонку, изменяя количество поступающего в двигатель воздуха, а значит, и горючей смеси – ведь подача топлива рассчитывается контроллером в зависимости от расхода воздуха. Когда двигатель работает на холостом ходу и дроссельная заслонка закрыта, воздух поступает через регулятор холостого хода – клапан, управляемый контроллером. Последний, изменяя количество подаваемого воздуха, поддерживает заданные (в программе компьютера) обороты холостого хода. Регулятор холостого хода ваз 2112 – неразборный, при выходе из строя его заменяют.

Многие владельцы современных автомобилей задаются вопросом: «Как работает инжекторный двигатель?». Незнание этого вопроса происходит, во-первых, из-за того, что далеко не все автовладельцы хорошо изучали физику в школе (на уроках физики рассматривается устройство и принцип работы двигателя внутреннего сгорания)

А во-вторых, в наше время совершенно необязательно досконально знать автомобиль, чтобы комфортно ездить на нём – в случае поломки, её всегда можно отдать в сервис. Однако находятся и сейчас заинтересованные автолюбители, которые желают знать о своей машине как можно больше, и наша статья предназначена как раз для таких.

Как работает инжекторный двигатель? Прежде всего стоит отметить, что инжекторный – это один из видов двигателя внутреннего сгорания, ставшего подлинной технической революцией. Начать наш рассказ с устройства и принципа работы двигателя внутреннего сгорания.

История создания и принцип работы ДВС

Двигатель внутреннего сгорания – двигатель, в котором сгорание топлива, за счёт которого выделяется энергия, происходит непосредственно в нем.

Наиболее распространены сегодня четырёхтактные двигатели , которые работают по следующей схеме: сначала производится впуск топливно-воздушной смеси, потом её сжатие, затем следует рабочий ход поршня и последним этапом является выпуск получившихся в результате сгорания газов.

Поскольку в двигателе внутреннего сгорания рабочим является только третий такт (рабочий ход поршня), производители таких силовых агрегатов включают в состав несколько цилиндров (как правило, 4, ), соседние друг с другом цилиндры работают с отставанием в один такт, чтобы обеспечивать постоянную работу двигателя.

Карбюратор

Чтобы двигатель внутреннего сгорания получал удобоваримую для работы топливно-воздушную смесь, инженерам нужно было придумать специальное устройство, которое бы прямо во время движения приготавливало такую смесь и передавало её в двигатель. И такое устройство было изобретено – им стал карбюратор.

Карбюраторные двигатели довольно долго занимали лидирующие положение на рынке двигателей, пока производители не начали задумываться об экологии, и вот тут-то выяснилось – карбюраторные очень сильно загрязняют природу, да и мощность была невысокая, а значит, нужно разработать принципиально новый способ подачи топливно-воздушной смеси.

Инжектор

Инжектор – одно из изобретений, резко изменивших всю автомобильную промышленность. В отличие от карбюратора, приготовлявшего воздушно-топливную смесь за пределами двигателя, при инжекторной системе топливо впрыскивается непосредственно в цилиндры, за счёт чего повышается мощность (инжекторные двигатели примерно на 10% мощнее, чем карбюраторные).

В общих чертах принцип работы инжекторного двигателя можно описать так: топливо впрыскивается через форсунки либо в коллектор, где происходит смешение топлива и воздуха, либо, как на большинстве современных автомобилей, прямо в камеру сгорания. Современные инжекторные двигателя делятся на два типа:

  • Моновпрысковые – всё топливо впрыскивается через общие форсунки, а затем распределяется по камерам сгорания;
  • Двигатели с распределённым впрыском – каждый поршень имеет свою собственную форсунку, через которую в него попадает топливо, смешение топлива с воздухом в данном случае происходит непосредственно перед сгоранием.
2186 Просмотров

Каждый автолюбитель в курсе, что у машины может быт как инжекторный двигатель, так и карбюраторный. Только не все знают, что каждый из них представляет из себя. Поэтому следует как можно лучше разобраться в этом вопросе. Для начала отметим, что функция выполняется одна и та же. Формируется горючая смесь, которая подается в двигатель. Только между их работой есть большое отличие. Рассмотрим какое.

Принцип работы инжекторного типа двигателя

Если сказать конкретно, то под карбюратором понимается устройство, которое создает смесь из воздуха и топлива, также оно в состоянии регулировать расход полученной смеси. Принцип работы заключается в том, чтобы засасывать ее в мотор. Это возможно благодаря тому, что и атмосфера имеют разное давление.

Инжекторный двигатель подразумевает работу электроники. В этой системе контролируется качество смеси без участия человека. Впрыскивается она с помощью форсунок дозированно. После впрыска смесь отправляется в двигатель для сгорания. В настоящее время машины оснащены именно электронной, а не механической системой. Далее рассмотрим, чем отличается один от другого.

Сравнение инжектора и карбюратора

Рассмотрим в чем принцип работы карбюратора. Это устройство способно сформировать смесь, которая состоит из воздуха и топлива. Смесь богата на горючие, легковоспламеняющиеся вещества. Она нужна, чтобы мотором могла осуществляться требуемая работа. Сколько бы оборотов не совершала двигательная система, он поглощает одно и то же по объему количество смеси.

По расходам карбюратор потребляет очень много топлива. В то же время сильно загрязняется воздух.

Теперь рассмотрим, каков принцип . Все устройство работает так, что в мотор отправляется бедная смесь из воздуха и топлива, которая должна быть точно дозирована. У современных автомобилей это происходит под влиянием блока управления. Так как дозируется топливо по граммам (порциям), то и расход его значительно мал. К тому же, токсичность выхлопных газов практически на нуле при выходе из выхлопной трубы. Получается, что двигатель внутреннего сгорания, практически не загрязняет воздух.

Инжектор может увеличить мощность мотора до десяти процентов, также клапанный блок устроен так, что улучшается. Принцип действия, который допускает устройство внутреннего сгорания, состоит в том, что инжектор образует смесь из воздуха и горючего, причем для него важно такое топливо, которое отличается качеством, иначе автомобилем управлять невозможно.

Также еще хочется отметить, что в отличие от карбюратора, который зимой замерзает, а летом перегревается, на инжектор не влияет температурный режим внешней среды.

Если говорить о том, насколько надежен карбюратор, то его принцип работы очень прост. Устройство так сделано, что после сгорания топлива, через выхлопную трубу выходит воздух, который сильно загрязнен. Но зато его не нужно регулярно обслуживать и производить ремонтные работы при эксплуатации. Только важно, чтобы не испортить устройство, использовать фильтр для топлива и только качественную марку.

Клапанный блок при этом отличается своей надежностью. Если мы говорим о карбюраторе, то на самом деле это устройство ломается очень часто, так как трудно найти качественное топливо. Правда, отремонтировать его очень просто. Любой автолюбитель это сделает своими руками. К тому же несложно найти запасные части, да и стоят они недорого.

Если же говорить об инжекторе, то его клапанный блок более надежен, когда его эксплуатируют. Но если что-то сломается, то починить сложнее, да и диагностировать поломку самостоятельно не удастся. Требуется особое оборудование. К тому же все дополнительные элементы для сгорания топлива, которые обосновывают принцип работы инжектора, стоят дорого.

Отличия между инжектором и карбюратором.

  1. Если мы говорим о карбюраторе, то смесь поступает в мотор сразу, а при работе инжектора в цилиндр отправляется смесь после впрыска из форсунок.
  2. Когда речь идет о карбюраторе, то обычно всегда подразумевается нестабильное его использование, тогда как благодаря электронике обеспечивается надежность.
  3. Карбюратором в холода пользоваться опасно, он замерзает, когда очень холодно, тогда как для инжектора погода не помеха.
  4. Карбюратор обеспечивает выбросы в атмосферу грязные, тогда как электроника более чистые.
  5. Благодаря электронной системе проще набрать обороты, если сравнивать с карбюратором.
  6. Если применяется инжектор, то обычно экономится до сорока процентов горючего.
  7. Хотя карбюратор ломается чаще, чем электроника, но отремонтировать второй очень дорого, по сравнению с первым.
  8. Также можно отметить еще одно отличие, которое состоит в том, что хотя каждый элемент привередлив к тому, каким качеством обладает топливо, электронная система также подвержена поломкам от некачественного горючего.

Понравилось? Лайкни нас на Facebook