Из чего делают радиаторы. Точка автозакипания: как выбрать автомобильный радиатор

Автомобильным радиаторам отводится роль охладителей двигателей и некоторых функциональных систем и устройств автомобиля. Благодаря радиаторам разогревается воздушный поток в отопительной, вентиляционной системах и системе кондиционирования.

Выход из строя радиатора системы охлаждения очень скоро приводит в негодность все транспортное средство. При поломке этого устройства в большем числе случаев требуется его полная замена, которую желательно производить со знанием дела. Как же подобрать наиболее оптимальный вариант покупки, отвечающий всем требованиям в условиях, когда каждый отдельный образец охладительного радиатора имеет свои неоспоримые достоинства и очевидные минусы? Помня о том, что, как и всё остальное, радиаторы для автомобилей не бывают идеальными, придется оценивать наиболее благоприятное и приемлемое сочетание плюсов и минусов.

Типы радиаторов охлаждения

Моделей радиаторов существует немало. Постараемся провести короткий анализ наиболее известных образцов:

  1. Радиаторы, снабженные круглыми трубами. Главное их преимущество это, конечно же, низкая стоимость. Их сборка производится механическим способом. Отличие подобных изделий в том, что их площадь поверхности теплопередачи достаточно ограниченная, и они не будут работать с прокладками любого образца.
  2. Радиаторы, оборудованные трубками овальной формы. Теплопередающая поверхность здесь, в сравнении с предыдущим образцом, несколько больше, при вполне приемлемой цене. Несколько подводит общая твердость и совсем незначительное число изготовителей, что создает определенные сложности.
  3. Спекаемые радиаторы. Это совсем другой уровень качества, что сразу отражается на цене. Они и надежны и очень прочны при оптимальных размерах поверхности теплоотражения. Хорошо выдерживают нагрузки, создаваемые мощными и очень динамичными силовыми агрегатами.
  4. Монолитно-алюминиевые радиаторы. Надо признать, что это продукт самого высокого качества, за который придется отдать значительную сумму. Подобными устройствами оборудованы не только высококлассные авто иностранного производства, но и многие обычные иномарки. Хотя алюминиевый радиатор стоит недешево, его может испортить коррозия.

Масляные радиаторы отвечают за поддержание нормальной температуры масла и обеспечивать как высокий, так и низкий уровень давления, что определяется их модификацией. Охлаждение масляного радиатора может выполняться естественным образом или искусственно. Во втором случае предусмотрена установка вентилятора, нагнетающего воздух, что в значительной мере повышает эффективность охладительной работы.

Радиатор является одним из ключевых и наиболее важных элементов Основной задачей становится рассеивание в атмосферу тепла, которое было отведено от двигателя охлаждающей жидкостью. Радиатор системы охлаждения двигателя можно считать важнейшей деталью самого силового агрегата.

Устройства, похожие на современный радиатор, устанавливались на самых ранних версиях автомобилей с , так как без указанного элемента охлаждения работа силовой установки становится попросту невозможной. Это устройство напрямую отвечает за поддержание нормальной рабочей температуры двигателя в строго отведенных рамках. Такая защита бережет мотор от перегрева, который неминуемо выведет практически любой двигатель внутреннего сгорания из строя.

Читайте в этой статье

История создания радиатора

Водяная система охлаждения появилась на заре двигателестроения. Впервые концепцию радиатора применили на первом серийном автомобиле под названием Benz Velo, который оказался в свободной продаже в 1886 году. Данную идею устройства продолжил развивать Вильгельм Майбах, который сконструировал изделие с сотами. Разработка нашла применение в конструкции модели Mercedes 35HP. За последующие десятилетия и до наших дней устройство радиатора не претерпело глобальных изменений, оставшись практически в том же самом виде, что и во времена Майбаха.

Первые жидкостные системы охлаждения двигателя не имели водяного насоса (помпы), который заставлял охлаждающую жидкость (в самом начале это была простая вода) принудительно циркулировать в системе. Ранние разработки системы охлаждения ДВС опирались на эффект термосифона.

Благодаря такому эффекту охлаждающая жидкость попадала в радиатор. Эффект термосифона основывается на том, что плотность воды понижается при нагреве. Разогретая вода благодаря этому свойству устремляется вверх. В итоге нагретая жидкость оказывалась в устройстве, проникая туда посредством прохода через верхний патрубок.

Внутри радиатора происходило охлаждение воды, плотность жидкости снова возрастала. Это приводило к тому, что вода опускалась в нижнюю часть радиатора, а уже оттуда проникала обратно в рубашку двигателя через нижний патрубок. Главным недостатком систем с эффектом термосифона стало то, что они не могли обеспечить должного охлаждения на фоне постоянно растущей мощности ДВС. Такие системы достаточно быстро вытеснили решения, которые основывались на применении центробежного водяного насоса (помпы).

Радиатор в системе жидкостного охлаждения

Главной задачей элемента является отвод тепла от силовой установки в атмосферу путем охлаждения жидкости, которая проходит внутри по каналам. Для обеспечения лучшего отвода тепла устройство монтируется в таком месте, где отмечен наилучший обдув встречным воздушным потоком в процессе движения автомобиля. Типичным местом установки в подкапотном пространстве является область за радиаторной решеткой спереди автомобиля. Стоит отметить, что даже в автомобилях с задним расположением ДВС радиатор зачастую устанавливается спереди. Отличием становится прокладывание более длинных магистралей системы охлаждения к двигателю.

Существуют и другие места для монтажа устройства охлаждения, но встречаются реже. Автомобили с заднемоторной компоновкой могут иметь радиатор, который установлен вдоль боковой стенки. Такое решение можно встретить на спортивных автомобилях, которые имеют сразу два радиатора охлаждения, расположенные вдоль обеих стенок моторного отсека. Эффективный обдув воздухом реализован путем использования воздухозаборников. Указанный воздухозаборник располагают в задней части машины на боковых стенках.

а – устройство; б – паровой клапан открыт; в – воздушный клапан открыт.

  • Радиатор конструктивно имеет верхний (1) и нижний (7) бачок. Эти бачки соединены между собой трубками (5) из латуни или алюминия. К этим трубкам посредством пайки прикреплены пластины (6), которые увеличивают площадь поверхностного охлаждения элемента. Через эту поверхность тепло отводится от охлаждающей жидкости и отдается в окружающую среду.
  • Верхний бачок имеет заливную горловину для заправки охлаждающей жидкостью. Горловина перекрывается пробкой (3). В этой пробке имеются паровой (11) и воздушный (12) клапаны.
  • Верхний бачок также имеет патрубок (2) для того, чтобы соединить радиатор с рубашкой охлаждения мотора. Такое соединение реализовано посредством резинового шланга. Дополнительно имеется пароотводная трубка (4), а также датчик электрического термометра (13).
  • Нижний бачок (7) имеет патрубок (8) для соединения устройства с насосом (помпой). Еще имеется дополнительный кран, который способен обеспечить слив охлаждающей жидкости. На раме автомобиля радиатор крепится специальными крепежными деталями (9).

Так называемые сердцевины (пластины радиатора) являются основными элементами теплообмена. В зависимости от типа сердцевины выделяют следующие типы радиаторов:

  1. трубчатые;
  2. пластинчатые;
  3. трубчато-ленточные и т.д.

Бачки радиатора могут быть изготовлены из пластика или металла. Если взглянуть на устройство более детально, тогда основная часть сердцевины, по сути, является набором бесшовных алюминиевых или латунных трубок. Трубки, соединяющие верхний и нижний патрубки, имеют толщину стенок до 0,15 миллиметра. Жидкость, проходящая через сердцевину радиатора охлаждения, расходится на большое количество микропотоков. Каждая такая трубка покрывается своеобразными ребрами, которые являются тонкой гофрированной медной или алюминиевой лентой.

Изделия из алюминия имеют меньший вес сравнительно с другими материалами изготовления, но склонны к ускоренному разрушению. Дело в том, что возникает ряд существенных сложностей при попытке сварки этого металла, а также алюминий плохо противостоит механическим повреждениям.

Для того чтобы алюминиевый продукт приблизился по качеству охлаждения к латунной конструкции, его необходимо изготавливать большим по размеру и увеличивать толщину элемента. В начале эпохи автомобилестроения активно использовались сотовые радиаторы. Такое устройство было выполнено из небольших отрезков латунных трубок, которые имели пятиугольное сечение. Жидкость внутри таких трубок не циркулировала принудительно, а весь процесс охлаждения осуществлялся посредством контакта металлических ребер со встречным потоком воздуха.

Вернемся к устройству современного радиатора. Паровой клапан, изображенный на рисунке, нагружается специальной пружиной (10). Пружина имеет упругость 1250-2000 г. Это позволяет нарастить давление в радиаторе охлаждения и повысить температуру закипания охлаждающей жидкости в жидкостной охлаждающей системе до отметки 110-119°С. Такое решение обеспечивает уменьшение объема охлаждающей жидкости во всей системе, что означает параллельное снижение массы двигателя. При этом сохраняется необходимая интенсивность охлаждения силового агрегата. Еще одним плюсом становится уменьшение потерь, под которыми следует понимать испарение охлаждающей жидкости.

Воздушный клапан также нагружают пружиной, но более слабой по силе противодействия. Упругость такой пружины находится на отметке 50-100 г. Задачей воздушного клапана является пропуск воздуха внутрь устройства в том случае, если произошла конденсация охлаждающей жидкости после того, как она закипела и была охлаждена.

Другими словами, внутри системы за счет явления парообразования может возникнуть избыточное давление. Точка кипения охлаждающей жидкости соответственно ему повышается, при этом нет зависимости от атмосферного давления, так как давление сброса задается клапаном в крышке. Такое свойство системы охлаждения незаменимо в процессе езды по горной местности. По причине пониженного атмосферного давления в горах охлаждающая жидкость закипает быстрее, чем в обычных условиях. Данное решение установки воздушного клапана позволяет таким образом предотвратить разрушение радиатора. который может быть попросту раздавлен атмосферным давлением.

Пробка, оснащенная клапанами, обеспечивает открытие выпускного клапана в случае закипания охлаждающей жидкости внутри системы и возникновения избыточного давления, которое приблизительно находится на отметке 0,5 кг/см 2 . Пар выводится в пароотводную трубку. Впускной клапан обеспечивает доступ воздуха тогда, когда давление внутри оказывается ниже атмосферного давления (ниже 1 кг/см 2), что возникает в устройстве при остывании охлаждающей жидкости.

Таким образом, устройство пробки полностью изолирует систему охлаждения от внешней атмосферы. По этой причине описанную систему называют системой охлаждения закрытого типа.

В закрытой системе охлаждения для слива охлаждающей жидкости нужно открыть сливные краны и извлечь пробку радиатора. Чтобы спустить жидкость из водяной рубашки двигателя, в нижней части блока отдельно предусмотрен соответствующий кран для слива. Существует также система охлаждения открытого типа. В открытой системе горловина устройства охлаждения закрыта пробкой без клапанов. В такой системе вода закономерно кипит при температуре 100°С.

Регулировка температуры охлаждающей жидкости

За поддержание постоянной температуры в системе охлаждения двигателя отвечает термостат. Данный элемент распределяет движение охлаждающей жидкости по контурам. Эти контуры называются малый и большой круг. Рубашку двигателя можно считать малым кругом, движение потока через радиатор-большой круг. Возникает такая ситуация, когда охлаждения наружным воздухом при движении ОЖ по большому кругу в жаркую погоду или при нагрузках оказывается недостаточно. Чтобы обеспечить эффективный отвод нагретого воздуха и поддерживать постоянную температуру охлаждающей жидкости дополнительно устанавливается один или целый ряд вентиляторов. Такие вентиляторы могут иметь механический привод (вискомуфту) или электрический привод.

Регулирование теплового режима «шторкой»

Жидкостная система охлаждения двигателя внутреннего сгорания может быть оснащена двойным регулированием теплового режима. Первым регулятором выступает термостат, о котором мы уже говорили. Вторым терморегулирующим элементом становится шторка-жалюзи.

Устройства с двойным регулированием конструктивно имеют жалюзи, установленные непосредственно перед радиатором. Благодаря такому решению в сильные морозы радиатор можно прикрыть, уменьшив интенсивность обдува наружным воздухом. Отвод тепла снизится, а само тепло можно более эффективно использовать для поддержания рабочей температуры ДВС и интенсивного отопления салона автомобиля.

Жалюзи представляют собой пластины из металла, которые соединены между собой шарнирами. Эти шторки могут иметь вертикальное или горизонтальное расположение перед устройством. Управление таким решением осуществляется рукояткой из салона автомобиля, а также может быть реализовано автоматически в отдельных конструкциях. Принцип действия механического устройства заключается в том, что задвигая или вытягивая рукоять в салоне, водитель осуществляет поворот пластин. Происходит изменение щели между жалюзи и происходит регулировка интенсивности обдува радиатора воздушными потоками. Результатом становится воздействие на температуру охлаждающей жидкости.

В условиях предельно низких температур на капот и радиаторную решетку дополнительно крепят специальный утеплительный чехол. Такой чехол изготовлен из водонепроницаемой пожаробезопасной ткани. Указанные меры способствуют поддержанию рабочего теплового режима двигателя в необходимых рамках.

Установка дополнительного радиатора

Появление мощных высокофорсированных атмосферных и турбодвигателей, которые работают в самых разных режимах нагрузки, поставило перед разработчиками задачу установить дополнительные устройства охлаждения. Инженеры реализовали параллельную установку дополнительного радиатора. Такое решение получило свой отдельный электрический вентилятор. Не стоит путать дополнительный радиатор охлаждения с интеркулером, который устанавливается для охлаждения сжатого воздуха в .

Принцип работы

Для правильного функционирования современные жидкостные системы охлаждения в процессе работы учитывают множество важнейших параметров. Специальные датчики снимают показания температуры двигателя, температуры охлаждающей жидкости и моторного масла, температуры за бортом и т.д.

Если вкратце описывать принцип работы системы охлаждения, тогда за точку отсчета стоит принять жидкостной насос. Этот элемент заставляет охлаждающую жидкость постоянно двигаться и циркулировать по кругу. При этом проход через рубашку охлаждения двигателя (малый круг) позволяет жидкости омывать горячие стенки головки блока и цилиндров. Когда температура охлаждающей жидкости растет, тогда при определенных показателях срабатывает термостат и открывает доступ жидкости в большой круг (радиатор). Так удается избежать перегрева двигателя и эффективно отдать жидкости избыточное тепло от нагретых деталей мотора. Когда горячая жидкость попадает в устройство охлаждения, от неё происходит отвод тепла в окружающую атмосферу. Полный цикл заканчивается, а охлажденная жидкость движется аналогично по новому циклу.

Вполне очевидно, что радиатор является своеобразным теплообменником, который обеспечивает эффективное охлаждение не самого мотора, а охлаждающей жидкости. Установка дополнительного вентилятора или жалюзи позволяет поддерживать температуру жидкости на оптимальном для работы мотора уровне как в экстремальный холод, так и в сильную жару.

Главной диагностической процедурой является периодический контроль системы охлаждения двигателя на предмет утечек и снижения объема охлаждающей жидкости в расширительном бачке. Контролировать количество жидкости можно визуально. Так как жидкость постоянно нагревается и охлаждается, со временем входящая в состав любой ОЖ вода частично выпаривается, что и приводит к общему снижению объема.

Если говорить о неисправностях радиатора, тогда основной является загрязнение его сот и каналов, а также их разрушение. Загрязнение приводит к тому, что циркуляция жидкости внутри устройства ухудшается, ОЖ при движении по большому кругу не успевает остыть. В таких условиях мощности вентилятора перестает хватать, так что перегрев двигателя неминуем.

Начинать ремонт радиатора охлаждения двигателя с загрязненными сотами стоит начинать с обычной промывки сердцевины проточной водой. Необходимо отсоединить нижний патрубок, а далее через горловину начинать заливать воду. Крайне желательно осуществлять промывку сот устройства охлаждения водой под давлением. В ряде случаев, когда радиатор сильно забит, его можно распаять и произвести демонтаж верхнего и нижнего бачков. После демонтажа становится возможным осуществить чистку сердцевины механическим способом.

В процессе эксплуатации верхний или нижний бачок, а также и сами соты начинают течь. Это происходит по причине использования низкосортных охлаждающих жидкостей, механических повреждений и т.д. Если подтекание незначительное, тогда можно попытаться засыпать или залить в радиатор специально предназначенное для временного устранения таких дефектов решение из автомагазина. К «дедовским» методам относят добавку большой порции горчичного порошка, который размокает и затягивает трещину. Как первый, так и второй способ не ремонтирует устройство полностью, а только позволяет устранить течь на время дороги до СТО и постановки автомашины на ремонт.

Что касается расширительного бачка, то пробку на нем при разогретом моторе нужно отвинчивать с аналогичной осторожностью. Слегка прокрутите пробку, но не до конца. Вы услышите характерный звук вырывающегося воздуха, похожий на тот, что возникает при открытии крышки на бутылке газированной воды. После такого стравливания крышку бачка можно постепенно открывать полностью и осуществлять контроль или долив охлаждающей жидкости.

Ни один двигатель внутреннего сгорания не обходится без системы охлаждения. Она не позволяет перегреть мотор во время эксплуатации автомобиля. На наибольшее распространение получила жидкостная система охлаждения. Среди ее преимуществ – эффективное и равномерное охлаждение двигателя, уменьшение шумности работы.

Автомобильный радиатор

Одним из важнейших элементов данной конструкции является радиатор. Его задача – жидкость, отводя при этом тепло в окружающую среду. Некое подобие современного радиатора устанавливалось даже на самых ранних автомобилях с ДВС.

Радиатор охлаждения двигателя, как правило, состоит из верхнего и нижнего бачков, сердцевины, где происходит непосредственно охлаждение жидкости, и деталей крепления. Жидкость, поступающая в радиатор из водяной рубашки двигателя, охлаждается в нем до требуемой температуры, после чего снова возвращается к двигателю. Корпус бачков и сердцевина радиатора изготавливаются из легких металлов, таких как латунь или алюминий. Благодаря их хорошей теплопроводности обеспечивается эффективное охлаждение жидкости.

Сердцевину радиатора составляют плоские металлические пластины, которые вертикально пронизывают полые трубки, соединяющие верхний и нижний бачки. Таким образом, жидкость через сердцевину проходит множеством потоков, в результате чего увеличивается площадь и интенсивность охлаждения.

Схема радиатора

Патрубки радиатора соединяют бачки с водяной рубашкой двигателя. В нижнем бачке имеется краник, который предназначен для слива жидкости. Такой же краник установлен и на двигателе. Жидкость в систему охлаждения заливается через горловину, расположенную на верхнем бачке радиатора.

В системах охлаждения, которые имеют современные автомобили, учитывается множество параметров, таких как температура двигателя, масла, окружающей среды и т. д.

Действие жидкостной системы охлаждения состоит в следующем. Насос постоянно и непрерывно обеспечивает циркуляцию жидкости. Благодаря этому омываются стенки цилиндров и головки блока, от них отводится тепло. Нагретая жидкость направляется по патрубкам в радиатор, где обеспечивается отвод теплоты в окружающую среду. После этого охлажденная жидкость возвращается в рубашку охлаждения двигателя и цикл повторяется.

Чтобы повысить эффективность работы всей системы охлаждения, дополнительно перед двигателем устанавливается вентилятор, который нагнетает воздух на поверхность радиатора. В результате процесс теплообмена сильно ускоряется.

В подавляющем большинстве на автомобили устанавливается вентилятор радиатора с электроприводом, который запускается автоматически благодаря управляющему датчику, когда температура охлаждающей жидкости становится слишком высокой. Вентилятор вместе с радиатором охлаждения устанавливаются перед двигателем.

Последствия перегрева двигателя

  • Слабый перегрев – двигатель 5-10 минут работает при повышенной температуре. Такое может случиться из-за поломки вентилятора или водяного насоса, однако водитель своевременно замечает перегрев и останавливает двигатель. Последствия такого перегрева минимальны – могут слегка подплавиться поршни, а многие современные двигатели и вовсе этого не заметят.
  • Средний перегрев – работа двигателя при повышенной температуре более 20 минут. Причиной такого перегрева может стать одна из вышеперечисленных или любая другая. Чаще всего при средней степени перегрева начинает «вести» головку блока цилиндров (искривляются посадочные поверхности, образуются трещины), пробивает прокладку головки блока, сальники начинают пропускать масло, могут разрушаться поршни.
  • Сильный перегрев – крайняя степень перегрева, чреватая самыми тяжелыми последствиями, вплоть до заклинивания и разрушения двигателя. При сильном перегреве начинают плавиться поршни, алюминий прилипает к стенкам цилиндров, двигатель начинает подклинивать. Головка блока начинает деформироваться, вылетают клапанные седла, появляется звонкий стук в верхней части двигателя. Моторное масло при таких температурах теряет свои свойства, смазка трущихся поверхностей фактически прекращается, шатунные вкладыши проворачиваются и в результате двигатель заклинивает.

Одно из последствий перегрева двигателя — прогар поршня

Для предотвращения перегрева двигателя необходимо следить за показаниями датчика температуры, а также поддерживать систему охлаждения в чистоте и исправном состоянии.

Ещё кое-что полезное для Вас:

Радиатор охлаждения, демонтаж, снятие с авто…

Очистка и промывка радиатора автомобиля

Для промывки радиатора необходимо полностью слить охлаждающую жидкость. После этого система охлаждения заполняется чистой водой (желательно дистиллированной). При промывке радиатора воду следует лить в заливную горловину радиатора.

Чем промыть ? Очень часто в воду при промывке добавляют каустическую соду для более эффективной очистки внутренних поверхностей. Пропорция, в которой необходимо приготавливать смесь – 50 грамм соды на 1 литр чистой воды.

Теперь нужно запустить двигатель, дать ему поработать на холостом ходу порядка 10-15 минут.

Средство для промывки радиатора

Существуют также специальные химические средства для очистки радиаторов, например, всем известный «Hi-Gear». Они также добавляются в воду, которой промывается радиатор. Благодаря своей высокой концентрации они позволяют значительно ускорить весь процесс. С их помощью радиатор промывается всего около 7 минут, однако при использовании подобных химикатов нужно четко следовать инструкции, иначе можно повредить внутренние поверхности системы охлаждения.

Для того чтобы слить воду из системы, на нижнем бачке радиатора и блоке цилиндров есть специальные краники. При сливе жидкости заливную горловину следует держать открытой. После того, как жидкость слита, заливается новая порция, и процесс промывки продолжается до тех пор, пока из радиатора не будет сливаться чистая вода.

После окончания промывки вся вода сливается, и система промывается обычной чистой водой 4-5 раз.

Зачастую причиной перегрева двигателя автомобиля являются загрязнения наружной поверхности радиатора. Это может быть пыль, гряз, пух, останки различных насекомых и т. д.

Чтобы очистить радиатор снаружи, его продувают или промывают. Чистка радиатора сжатым воздухом может осуществляться непосредственно на автомобиле, однако такой способ малоэффективен. Промывают радиатор снаружи чаще всего водой под давлением с помощью обычных мини-моек, например, всем известный «Керхер». Однако здесь будьте аккуратны с давлением – слишком сильный напор способен повредить мягкие соты радиатора.

Водные процедуры для радиатора никогда не повредят

По завершении промывки радиатора система охлаждения заполняется свежей жидкостью. Для того чтобы избавиться от завоздушивания системы, следует открыть пробку радиатора, завести двигатель и дать ему поработать несколько минут. Лишний воздух выйдет, а вам лишь останется долить необходимое количество охлаждающей жидкости.

Свойства радиатора напрямую зависят от того, из какого материала он изготовлен. Рассмотрим самые популярные виды материалов, используемых в производстве радиаторов и отопительных приборов.

Алюминий

Металл из легкой группы, третий химический элемент в мире по распространенности. Алюминий хорошо поддается разным видам механической обработке и литью. Технические характеристики металла:

  • высокая теплопроводность и электропроводность;
  • металл не магнитится и не горит;
  • отличные антикоррозийные свойства.

Устойчивость к коррозии создается за счет образующейся оксидной пленки, защищающей поверхность алюминия от негативных внешних воздействий.

Благодаря высокой пластичности металл используется в разных отраслях, уступая по объему применения лишь железу. Принимает любые формы, обладает долгим сроком службы. Это один из самых легких металлов в мире (почти в 3 раза легче железа), при этом алюминий очень прочен.

Он обладает высокой способностью к соединению с разными элементами, что позволяет получать широкий спектр сплавов. Даже если добавить в состав незначительное количество другого химического элемента, это серьезно изменит характеристики металла и расширит возможности его применения.

В чистом виде алюминий не встречается в природе. Основной объем мирового алюминия производится из бокситов – запасы этого минерала сосредоточены в разных уголках планеты. В России для производства металла используется нефелиновая руда, добываемая в карьерных условиях.

Алюминиевые радиаторы устойчивы к коррозии и обладают отличной теплопроводностью. Ввиду высокой пластичности металла радиаторы не рекомендуется устанавливать в местах, где оборудование может быть подвергнуто механическому повреждению. Для повышения устойчивости металла к внешним механическим воздействиям его поверхность может дополнительно обрабатываться специальной порошковой краской.

Сталь

Для производства радиаторов отопления обычно используется низкоуглеродистая сталь, обладающая высокой коррозийной устойчивостью. Предварительно стальные панели проходят процесс обезжиривания, их покрывают порошковой эмалью и подвергают термической обработке.

Преимущественные характеристики низкоуглеродистых сталей:

  • пластичность (это позволяет подвергать материал деформации без риска образования трещин);
  • отличная способность к сварке и обработке, слабое закаливание.

Основная область применения низкоуглеродистых сталей – это изготовление различных изделий холодной штамповкой. Для придания материалу дополнительных свойств в него добавляются специальные элементы, меняющие состав и характеристики стали: повышение устойчивости к коррозии, улучшение прочностных характеристик и т.д. Углеродистая сталь с дополнительными добавками называется легированной.

Существует несколько технологий производства стали, в основном для ее получения используется чугун и металлолом. Наиболее распространенная технология выплавки – это кислородно-конвертерный способ. К новейшим методам выплавки можно отнести электролиз.

Недостатками низкоуглеродистой стали по сравнению низколегированными видами являются более низкие прочностные характеристики и меньшая ударная вязкость.

Чугун

Чугун состоит из углерода и железа. Процентное соотношение углерода может составлять до 6% и более. На свойства материала влияет наличие примесей в составе: марганца, серы, кремния и др. В зависимости от количества примесей различают три основных вида чугуна:

  • белый – в основном применяется для производства стали;
  • серый – вязкий металл, хорошо поддающийся обработке, используется в машиностроении и производстве различных конструкций, работающих в условиях повышенной интенсивности;
  • легированный – так называют чугун, в состав которого добавляют элементы для повышения его основных характеристик: прочности, износостойкости и т.д.

Чугун используется для производства литых конструкций и деталей, эксплуатируемых в условиях невысокой динамической нагрузки. Материал хорошо обрабатывается и стоит дешевле стали (этим объясняется доступная цена радиаторов отопления).

Первый радиатор был отлит из чугуна в середине XVIII века. Позднее оборудование получило широкое распространение в Европе и России и пользуется спросом до сих пор, несмотря на развитие технологий по производству радиаторов из других материалов.

Одно из преимуществ чугуна, которое сделало его популярным материалом для производства батарей отопления – это высокая стойкость к коррозии. После установки поверхность радиатора покрывается сухой ржавчиной, что тормозит дальнейшее проникновение коррозии.

Стенки радиаторов из чугуна очень толстые, это повышает вес и прочность изделия, а также значительно продляет срок его службы. Еще один плюс – это неприхотливость к теплоносителю. Наличие примесей в воде не вредит батарее изнутри, материал сложно повредить поэтому чугунные радиаторы обеспечивают стабильную работу отопительной системы на протяжении долгого времени, не требуя замены (до 50 лет).

Высокая масса радиаторов обеспечивает отличную теплоемкость и инерционность, сглаживая изменения температурного режима в помещении. При длительной эксплуатации (более 40 лет) может возникнуть разрушение чугунных ниппелей. За счет пористости и шершавости чугуна на внутренних стенках радиаторов со временем образуется налет, что приводит к потере теплоотдачи.

Латунь

Латунь - это сплав на основе цинка и меди. Состав цинка в сплаве может достигать 45%, он влияет на повышение технологических и механических свойств латуни, а также снижает стоимость материала (так как обладает более низкой ценой, чем медь).

Из латуни получают различные изделия, в том числе радиаторные трубки, которые отличает повышенная прочность, длительный срок службы, устойчивость к воздействию коррозии и способность к сварке.

Материал хорошо поддается обработке и обладает высокими механическими свойствами. По сравнению с бронзой, латунь обладает более высокой прочностью и стойкостью к коррозии. К основным недостаткам латуни можно отнести слабую устойчивость на открытом воздухе и в соленой воде.

Высокая влажность способна спровоцировать развитие коррозии латуни, поэтому на стадии производства материал обрабатывается и подвергается низкотемпературному обжигу. Латунь сохраняет пластичность даже при понижении температуры, не становясь хрупким.

Плавка латуни осуществляется в печах разного типа, наиболее распространена технология выплавки в индукционных печах. По технологии сплав не рекомендуется нагревать до слишком высоких температур, поскольку это может привести к возгоранию некоторых составляющих.

Медь

Использовать медь человечество начало еще в IV тысячелетии до нашей эры, это объясняется тем, что данный металл может встречаться в природе.

Температура плавления меди составляет 1083° С. Это мягкий и ковкий металл, хорошо проводящий электрический ток и обладающий отличной теплоемкостью. При отрицательной температуре металл повышает свои прочностные характеристики и пластичность.

Медь устойчива к коррозии, при эксплуатации в условиях высокой влажности и атмосферы с повышенным содержанием углекислого газа поверхность металла покрывается специальным защитным налетом, имеющим зеленоватый оттенок. Данное покрытие называют патиной.

Практически 80% всей меди на планете выплавляют из сульфидных руд. Процесс включает в себя несколько процедур: отжиг, выплавка, рафинирование и др. Благодаря высоким теплопроводным свойствам металл используется для изготовления радиаторов отопления. Гибкость металла упрощает монтажные работы.

Существуют различные сплавы меди: бронза, латунь и т.д., повышающие качественные характеристики металла. Для получения сплавов в состав меди добавляют цинк, свинец, марганец и пр. Содержание самой меди в сплавах превышает 30%.

Медные радиаторы можно эксплуатировать при высоком атмосферном давлении, а максимальный температурный предел, который выдерживают батареи, составляет +150°. Устойчивость меди к воздействию многих химических активных веществ позволяет использовать в радиаторах разные виды теплоносителей, в том числе обычный бытовой антифриз.

К недостаткам металла можно отнести его высокую стоимость, что повышает цену радиаторов и ограничивает их широкое распространение.

Понравилось? Лайкни нас на Facebook