Круговое движение в России – распутываем узлы. Транспортные развязки

Безопасность дорожного движения является наиважнейшей характеристикой автомобильной дороги. Германия является одной из передовых стран по развитию автодорожной инфраструктуры, а также норм проектирования. По основному закону скорость движения по автобанам не ограничена, за исключением некоторых участков из-за старого покрытия, ремонта или особенностей прохождения дороги (город). Однако статистика утверждает, что в Германии в 2011 году на дорогах погибло 4 002 человек (1 человек из 22 500 жителей) [статистика ДТП в Германии ], в России же 27 953 человек (1 человек из 5 700 жителей) [статистика ДТП в России ].

Существенную часть аварий можно избежать, правильно выбирая сочетание геометрических элементов автомобильной дороги и узлов, предупредительных элементов, элементов оснащения автомобильных дорог и т.д.

Важным условием проектирования дорог является то, что водитель имеет право на ошибку, но последствия этой ошибки должны быть минимальными.

Соответственно, задачей проектировщика с точки зрения безопасности является:

  1. Предоставить комфортные условия проезда, исключающие ошибку водителя;
  2. В случае возникновения ошибки водителя, минимизировать ее последствия.

Регулирование поведения водителя на дороге

Геометрия дороги и окружающая ситуация влияет на скорость транспортного средства. Чем шире проезжая часть, тем выше выбираемая скорость одиночного транспортного средства. Чем прямее дорога и меньше поворотов, тем выше скорость транспортного средства. Более того водитель часто теряет контроль расстояния и скорости. Ему постоянно кажется, что он едет медленно.

На наших дорогах очень часто можно встретить протяженные прямые участки дорог связанные кривыми малого радиуса. Такая геометрия с одной стороны позволяет водителю развить максимальную для автомобиля скорость, с другой стороны водителю приходится резко тормозить перед поворотом. Дорожный знак, предупреждающий о повороте, может быть не замечен водителем.

Еще одним отрицательным фактором долгих прямых участков является монотонность, которая приводит к потере внимания и сонливости.

По опыту эксплуатации дорог в Германии выявлено, что, не смотря на выгодность прямых с точки зрения кратчайшего расстояния между пунктами, они являются и наиболее опасными элементами автомобильных дорог для водителей. Например, самый аварийно опасный автобан в Германии – это А2 Берлин-Ганновер, который состоит из протяженных прямых участков. На основе исследований в Германии принят норматив максимальной длины прямого участка L=20V расчетная. То есть при расчетной скорости 120км/ч максимальная длина прямой составит 2400м.

Снизить максимальную скорость на участке возможно разнообразным сочетанием геометрии и окружающей ситуации. Плавные последовательные кривые не дают водителю разогнаться. А замкнутое пространство, например, плотная застройка или частые насаждения также передают водителю ощущение опасности, и на больших скоростях в таких условиях водитель чувствует себя не комфортно.

Соответствие геометрических элементов ожиданиям водителя

Геометрические элементы дорог и транспортных развязок должны соответствовать ожиданиям водителя. Ожидания водителя в свою очередь формируются привычками и предыдущими элементами. Если предыдущие элементы позволили развить высокую скорость, то устраивать вслед за такими элементами резкий поворот будет очень опасно. Для того чтобы плавно снизить скорость водителя необходима последовательность элементов с постепенным изменением параметров. Например, не безопасно после затяжного прямого участка вставлять радиус 200 метров. Однако если вставить между прямой и малым радиусом несколько последовательных кривых – с радиусом 2000, 1200, 800, 400 метров в порядке уменьшения – то водитель сам постепенно снизит скорость и будет безопасно подготовлен к крутому повороту.

Рассмотрим пример примыкания в разных уровнях по типу Труба. В ВСН 103-74 говорится, что в зависимости от местных условий и транспортной ситуации может применяться зеркальная схема. В учебнике «Пересечения и примыкания автомобильных дорог» утверждается, что одним из основных определяющих факторов для выбора схемы примыкания типа Труба являются интенсивности левоповоротных потоков.

Но в данном случае упущен тот факт, что съезжающий по левоповоротнему съезду на примыкающую дорогу водитель уже подготовлен к малому радиусу наличием переходно-скоростной полосы, на которой по привычке снижается скорость. А въезжающий по левоповоротнему съезду с примыкающей дороги водитель как находился на главной дороге, так и остался на ней, ничто кроме знаков не указывает ему о приближении малого радиуса. Именно основываясь на этом доводе, в Германии рекомендуют устраивать примыкание по типу Труба со съездами с левой стороны от путепровода, так как только в этом случае можно использовать максимально возможные радиусы для данного съезда с обеспечением наиболее высокого уровня безопасности. Кроме того необходимо самой геометрией примыкания указывать водителю наличие опасности. На следующем рисунке указана типовая схема развязки по типу Труба в Германии.

Несмотря на все эти условия, в последних немецких нормах (2008г) рекомендуют по возможности рассматривать варианты устройства более безопасного типа примыкания — Треугольник.

Конфликтные точки

Конфликтные точки – это места пересечения, схождения и расхождения транспортных потоков. Наиболее опасными конфликтными точками для транспортных развязок являются места параллельного пересечения транспортных потоков. Они связаны с перестроением двух параллельных потоков. При этом их траектории пересекаются.

При высоких интенсивностях эти конфликтные точки влияют не только на безопасность движения, но, также могут привести к образованию заторов (см рис. ниже). Водителю нужно перестраиваться и в тоже время контролировать ситуацию в соседней полосе, интервалы до транспортных средств в обеих полосах и скорости транспортных средств в обеих полосах, а также постоянно проверять слепую зону. Особой проблемой в этом случае являются медленно разгоняющиеся большегрузные автопоезда, которым просто не позволяют перестроиться юркие легковые автомобили, и которые тормозят весь транспортный поток.

Предусмотреть данную ситуацию на стадии проекта можно экспертным путем, зная необходимые интенсивности движения. В Германии такую оценку производят с помощью специальной методики (будет освещена в последующих статьях).

Самым дешевым улучшением может быть удлинение области перестроения потоков за счет вытягивания левоповоротнего съезда вдоль основной дороги. Более дорогим решением является устройство прямого или полупрямого левоповоротнего съезда, который позволит совсем избежать области пересечения потоков.

Уменьшению количества опасных зон на транспортных развязках также служат различные усовершенствования форм. Например, наиболее удобные условия движения по главной дороге и в области переплетения потоков создаются, когда на основной дороге съезд находится перед въездом. Для этого предусматривается отделение съезжающих и въезжающих потоков от основной дороги отдельным проездом.

В результате вместо двух съездов и двух въездов на основном ходу находится только один съезд, вслед за которым расположен один въезд. Таким образом, область пересечения потоков переносится с основной дороги на съезд и уменьшается общее количество конфликтных точек для основного транспортного потока. Пересечение потоков на съездах происходит на меньших скоростях. Это в свою очередь увеличивает пропускную способность транспортной развязки и безопасность для водителей.




Впервые о пересечении дорог на разных уровнях высказался Леонардо да Винчи еще в ХVI веке, но за последние полвека новых видов и типов представлено не было. Есть некоторые энтузиасты, такие как Семенов из Санкт-Петербурга, Петрук из Киева, Бутеляускас из Литвы, Ли Дзанг Хи из Кореи, кто находится в поиске оптимальных решений для транспортных узлов. Вовлекся в эту работу и ваш покорный слуга, считая себя одним из последователей да Винчи на ниве изобретательства и осознавая просчеты проектировщиков, выводящих на традиционных клеверах…

Основной целью моего проекта была разработка развязки, которая позволяла бы решить проблему преодоления пробок на автодорогах: чтобы просто и удобно было проезжать перекрестки, которые по аварийности перетягивают на себя треть всей . Причем развязки более технологичной и дешевой при возведении относительно строящихся ныне.

Поставил перед собой три трудно совместимые задачи:

  • езда на все четыре и более сторон;
  • езда без пересекающихся и переплетающихся потоков;
  • изменение любого направления движения без приостановки и значительного снижения скорости.

В результате длительной и кропотливой работы получил патент на изобретение № 2468138, действующий до 25.07.2031. Получилась единственная в мире система транспортных развязок модульного типа любой конфигурации и с множеством вариантов исполнения. А именно - турбинно-кольцевая транспортная развязка. Это не просто красивое словосочетание. Ее внедрение приведет к изменению определения самой транспортной развязки. В новой редакции, если добавить пару слов, оно должно звучать так: «Транспортная развязка - комплекс дорожных сооружений (мостов, туннелей, дорог), предназначенных для минимизации, а также полного устранения пересечений транспортных потоков и как следствие для увеличения пропускной способности дорог».

Недостатки турбинно-кольцевой развязки

  1. Средняя сложность конструкции.
  2. Резкие перепады высот и длинные уклоны (они нивелируются при новом строительстве, когда круговое движение на первом или втором уровнях).
  3. Непригодность для центральных городских перекрестков.

Сколько это стоит?

Теперь о самом главном для заказчика - о стоимости. В Москве развязки дешевле 5 млрд руб. не строят, есть даже две по 17 миллиардов. Мои предложения в министерства транспорта Челябинской области, Крыма, Севастополя, Белоруссии вызвали определенный интерес, но 1,5 млрд руб. для них оказались слишком большими вложениями.

Специфика бизнеса строительства дорог заключается в отсутствии конкуренции, так как средства выделяются из бюджетов государства или его субъектов монополистам с «устойчивыми долголетними связями» (так я аккуратно завуалировал откаты). Без соперничества не рождаются новые идеи, не формируется спрос на них. Ведь у финансирующих организаций отсутствует понятие новизны, а исполнителям менять что-либо всегда невыгодно.

На пути к намеченной цели, еще до патентования, почувствовал, что проект запросто можно видоизменить под различные дорожные ситуации. И вместо одного концепта создал аж девять! Для ознакомления с изобретением обращался в различные инстанции и организации. А именно: в Министерство транспорта РФ, Правительство Москвы и Санкт-Петербурга. Предлагал, к примеру, сделать МКАД безостановочным, организовать бессветофорное движение на Невском проспекте, не нарушая при этом исторический облик города с его обилием водной среды. Но никому до этого и дела нет.


В 2013 году Департамент транспорта Москвы провел анализ эффективности устройства турбинно-кольцевой развязки в сравнении с предложениями НИиПИ Генплана Москвы. В итоге, по их выводам, мои предложения оказались эффективнее, в частности, по сроку окупаемости - два года против шести. В чем уступил? В цене. Затраты на строительство рассчитаны в 2,772 млрд руб. против их чуть менее двух миллиардов. Так что получил отказ. В ответ на него предложил руководителю департамента Максиму Ликсутову построить мою развязку за 2 млрд руб., а если не хватит, то д обавить из своих карманов. В итоге Москва построила свою развязку… за 7 миллиардов! И школьнику начальных классов понятно, что четырехуровневое сочленение дорог с двумя туннелями, затрудняющими движение транспорта при строительстве, не может стоить дешевле трехуровневой.

Свое изделие оцениваю в 1,5 млрд руб. со сроком строительства в один год. Пусть это спорные цифры. Отказ от строительства пешеходных надземных или подземных переходов с остановками общественного транспорта на небольшом удалении от объекта, а также разворотных эстакад или туннелей позволит дать экономию около полумиллиарда рублей. По «клеверу» пешеходы ходить не могут, а турбинно-кольцевые это позволяют. Плюс пересадочный узел и возможность разворота непосредственно на эстакаде, а не перед ней.

Если у кого-то сомнения в цифрах, то как объяснить, что в Киеве у моста Патона построили развязку, на три четверти похожую на мою? Вы не поверите, но ее возвели всего за полгода и менее чем за 800 млн руб.! Просто это были европейские деньги и строилось все к чемпионату Европы по футболу 2012 года.


Прошлой осенью предоставилась возможность провести презентацию в «Автодоре». Им понравилось. Предложили получить заключения от авторитетных проектных организаций. Некоторые отделались смешными заочными отписками, МАДИ от сотрудничества и вовсе уклонился.

Как итог, развязок строится вроде бы много, но дорожная ситуация только ухудшается. Главной проблемой пробок является не постоянно увеличивающееся количество транспорта на автодорогах, в чем нас пытаются заверить, а проблемы стоящего транспорта. Ими я и занимаюсь уже более двух десятков лет. Кроме представленных девяти вариаций одной идеи позже появились еще пять, совершенно не похожих на представленные.

P.S.: Конкретное имя развязке можно дать по названию города, где она появится первой. Готов к адекватному общению в комментариях.

Уже при возникновении идей о строительстве скоростных дорог ставились вопросы о пересечении нескольких таких дорог друг с другом. В виду малого количества участников дорожного движения задумывались лишь об усовершенствовании обычных пересечений, устраиваемых в одном уровне. Подобные схемы можно наблюдать в немецком журнале «Der Strassenbau» 1929 года.

Необходимо сознавать, что в 1929 году под «высокими интенсивностями движения» понимался транспортный поток 1800 автомобилей в сутки. В настоящее время такие интенсивности движения считаются очень низкими. Для сравнения — это пропускная способность одной полосы (а не дороги) в час (а не в сутки). Но проектировщики, думающие на перспективу — в основном в США из-за бурного развития автомобильного транспорта — предусматривали, что в будущем придется работать с более высокими интенсивностями движения.

При повышении интенсивности движения на пересекаемых дорогах автомобилям приходилось снижать скорость или вовсе останавливаться. Поэтому было необходимо расположить такие дороги на разных уровнях. Для того чтобы съехать с одного уровня и попасть на другой были предложены многочисленные решения.

До 1930 года во Франкфурте были сформулированы следующие соображения по поводу транспортных пересечений:
«Перпендикулярные пересечения создают большую неразрешимую проблему. Эта проблема возникает в связи с необходимостью формирования сети автобанов. Эта транспортная сеть приводит к появлению перпендикулярных пересечений двух дорог. Подобное пересечение позволяет реализовать 12 направлений – по прямому направлению, а также поворачивающие. То есть обычное пересечение подразумевают под собой 8 точек слияния потоков (в конце правых и левых поворотов), 4 точки пересечения под прямым углом (на пересечении прямолинейных направлений) и 12 точек пересечения под тупым углом (на пересечении левых поворотов друг с другом и с прямолинейным направлением). То есть в сумме 8 точек повышенного внимания и 16 точек повышенной аварийности. Необходимо найти способ избежать появления этих конфликтных точек пересечения потоков».

Также во Франкфурте появилось следующее сравнение различных пересечений:

Готическое пересечение — это наиболее дорогое сооружение. На 1931 год — 1.431.000 немецких марок. Обеспечивает полностью безостановочное движение. Большие радиусы. Но в этом решении прямолинейные участки автобанов приходится разрывать кривыми. Площадь — 17 гектар. 8 малых мостов.

Кольцевое пересечение — самое примитивное решение, но в тоже время наиболее дешевое. Стоимость в 1931 году составляет 291.000 немецких марок. Малая потребность в площади. Нет мостов. Для современных автобанов не применима, только в качестве распределительных колец на второстепенных дорогах в составе транспортной развязки.

Пересечение Барокко требует около 13 га и не имеет пересечений транспортных потоков под острым углом. 4 петли лежат на земле. 4 моста. Стоимость в ценах 1931 году — 694.000 немецких марок.

Пересечение Ренессанс (развязка по типу Клеверный лист). Оба автобана могут быть проложены без искривления. 1 мост. Стоимость на 1931 год — 1.220.000 немецких марок.

Разработка транспортной развязки типа клеверный лист

Наиболее популярный вид пересечений представляет собой так называемый клеверный лист. Впервые в мире подобная развязка появилась не далеко от Нью-Йорка в 1928 году.
Не смотря на этот факт можно утверждать, что транспортные развязки подобного типа примерно в одно и то же время были разработаны в различных местах, не зависимо друг от друга.

Первый патент в США, 1916 год

Самый первый патент на пересечение в виде клеверного листа был получен 29 февраля 1916 года инженером Артуром Хале из Мериленда (США). Хале на 9 страницах своего патента описал три варианта развязки по типу клеверного листа. Отображенный эскиз показывает основную форму. Другие 2 варианта представляют более компактную форму, которую Хале предлагал для городских условий.

Один из вариантов компактной формы был использован в Чикаго в 1927 году на пересечении двух главных дорог на берегу озера Мичиган.

Нью-Джерси, первая половина 1920-х годов

История клеверного листа в Вудбридже недалеко от Нью-Йорка указывает на совершенно другие источники вдохновения. Сначала нужно указать на то обстоятельство, что хайвей US-1 между Нью-Йорком и Филадельфией уже к середине 1920-х годов был наиболее загруженной магистралью США. Интенсивности транспортных потоков по нему достигали 60.000 автомобилей в сутки. В местах въезда на US-1 и съезда на оживленные улицы присутствовали регулярные пробки и многочисленные аварии. Требовалось креативное решение. Едвард Делано из строительной фирмы Рудольф и Делано из Филадельфии увидел заметку в специализированном строительном журнал, как Аргентине на пересечениях достигается эффективная организация движения.

Скорее всего, это было решение, которое в настоящее время является типичным для Буэнос-Айреса. В Буэнос-Айресе часто на улицах со встречным движением левый поворот запрещен. Вместо этого необходимо трижды повернуть направо. То есть объехать квартал и пересечь дорогу в месте, в котором был необходим левый поворот. Подобное решение, скомбинированное с мостом для разделения пересечения на разные уровни, как раз и создает клеверный лист. Таким образом, аргентинские идеи организации дорожного движения повлияли на создание клеверного листа в Вудбридж и в последующем многих других местах.

Первый официальный клеверный лист США в Вудбридже в Нью-Джерси США (построен в 1928г). Этот клеверный лист входит в список охраняемых памятников. Однако в 2004 году в целях повышения уровня безопасности движения и увеличения пропускной способности был реконструирован в ромбовидное пересечение.

Патент в Швейцарии, 1928 год

Отдельно можно рассматривать получение патента на изобретении клеверного листа в Швейцарии в 1928 году. Изобретателем был учеником слесаря и даже подготовил макет своего решения.

Решение в виде клеверного листа имело преимущество перед другими предложениями. Этими преимуществами являлись:

1. Возможность проложения главных направлений без искривления
2. Потребность только в 1 мосте

Первый клеверный лист в Европе был введен в эксплуатацию 21 Ноября 1936 года недалеко от Лейпцига (Германия). Однако полностью движение по нему открылось только 5 ноября 1938 года.

Не смотря на успешное решение задач, связанных с пересечением транспортных потоков в начале 20 века, клеверный лист не является особо удачным решением при высоких поворачивающих интенсивностях. На правых полосах внутри развязки образуются конфликтные точки переплетения потоков, которые провоцируют аварийные ситуации и уменьшают пропускную способность левоповоротних съездов. Для решения этой проблемы были придуманы многочисленные решения по улучшению клеверного листа.

Серьезные проблемы со строительством высокоскоростных магистралей появились при увеличении уровня автомобилизации. В США это 1940-ые годы, в Европе — 1960-е годы.
На застроенных территориях предложенные выше решения не являлись оптимальными. «Креативные» предложения по этому вопросу появлялись, прежде всего, в США. Однако их реализация требовала огромных площадей.

Пересечение в Нью-Йорке, построенное в 1939 году, являлось уникальным во всем мире из-за своего размера.

Первая четырехуровневая транспортная развязка в мире была введена в эксплуатацию между 1949 и 1952 годом в Лос-Анжелесе (США). С ежедневными интенсивностями почти в 500.000 автомобилей она относится к трем наиболее загруженным пересечениям мира.

В настоящее время вопросы проектирования транспортных развязок охватывают намного больше факторов влияющих на движение. Подробнее об этом можно прочитать в серии статей .

Светофорная развязка образуется путем пересечения под произвольным углом, обычно прямым, двух и более дорог. Термин «развязка» употребляют только при сложном светофорном цикле, наличии других дорог для поворотного движения или запрете следования в одном из направлений. К преимуществам такой развязки относятся простота светофорных циклов и возможность выделения отдельного цикла для пешеходов. В число же недостатков входит в частности проблема левого поворота при интенсивном движении на одной из дорог. При очень интенсивном движении время ожидания зеленого света может достигать 10 минут.

Светофорная развязка с карманом для разворота и левого поворота устраивается в случаях, когда на одной из улиц уже есть разделение потоков. К преимуществам относятся простота светофорных циклов и возможность использования имеющегося места на старом перекрестке. Недостатки же следующие. Во-первых, перегрузка , на которой устроены карманы, может создать пробки. Во-вторых, при левом повороте, а иногда и при развороте, необходимо стоять в течение как минимум двух сигналов светофора. Для решения этой проблемы обычно разрешают правый поворот на красный. В- третьих, ухудшается положение пешеходов засчет сокращения цикла или ликвидации фактически бессветофорного перехода. Такую развязку часто строят вместе с подземным переходом. В-четвертых, необходимо убирать помехи для видимости пешеходов, либо создается опасность правого поворота.

Работа круговой развязки основана на том, что вместо перекрестка строится круг, на который можно въезжать и с которого можно съезжать в любом месте. К преимуществам относится то, что количество светофорных циклов снижается до минимальных двух, на пешеходный переход и проезд машин, иногда светофоры упраздняются вообще. Кроме того, нет проблемы левого поворота при правостороннем движении, возможно ответвление и более четырех дорог. В число недостатков входит то, что такая развязка не может дать приоритет какой-либо дороге. Она применяется, как правило, на дорогах сходной загруженности. Высокой аварийной опасности сопутствует необходимость четко учитывать потоки пешеходов. Кроме того, для устройства такой развязки требуется много дополнительного места. Пропускная способность ограничена длиной окружности, а полос движения не может быть более 3.

Один из возможных вариантов светофорно-тоннельной развязки заключается в том, что на главной дороге для движения прямо строится тоннель или эстакада, для остальных сохраняется светофорное движение. Такая развязка позволяет выделить преобладающий поток без ущерба для второстепенной . Практически нет препятствий для движения общественного транспорта. Нередко можно сделать верхнюю зону преимущественно пешеходной. К недостаткам же относится необходимость преобладания одного из потоков над другим. Если потоки сравниваются, то становится невозможным движение общественного транспорта через светофорную зону. При росте потока может закупориться тоннель. Кроме того, необходимо большее расстояние перед следующим перекрестком по сравнению со светофорной развязкой.

Есть еще несколько видов бессветофорных развязок. К преимуществам клеверообразной развязки относится то, что для ее устройства требуется не так много места по сравнению с другими видами многоуровневых развязок. Возможен, хотя и затруднителен, разворот в базовой конфигурации. Строительство же можно осуществить с минимальными затруднениями. Сначала строятся для правого поворота, затем прямое пересечение закрывается на период строительство моста, после чего достраивается «клевер». Недостатки включают необходимость выполнения левого поворота на 270 градусов. Въезд расположен перед выездом, что само по себе может создать заторы и аварийные ситуации, особенно если под мостом располагаются остановки общественного транспорта. Есть и трудности для пешеходов, ведь для того, чтобы пересечь развязку, требуется пройти большое расстояние и при этом пересечь как минимум две боковые . Наконец, на практике по развязке «клеверный лист» возможно движение со скоростью не более 40 километров в час, по остальным дорогам можно двигаться быстрее.

Есть еще бессветофорная развязка неполного развертывания, или частично клеверообразная. Здесь можно развить большую, чем на типичной клеверообразной развязке, скорость засчет более длинных полос. Строительство такой развязки оказывается дешевле засчет уменьшения длины мостов. Есть возможность задействовать все направления. Часто развязка неполного развертывания проектируется именно под преобладание левого поворота. Недостатком же является то, что для съезда и выезда выделяется только часть полос. Выделить все полосы невозможно.

Трехуровневая клеверообразная развязка лишена типичных недостатков клеверообразной развязки засчет наличия левых поворотов. Возможен, хотя и затруднителен, разворот в базовой конфигурации. К недостаткам можно отнести сложность развязки, а также то, что вблизи не должно быть зданий. Кроме того, такая конструкция позволяет устраивать развязку на пересечении не более четырех дорог.

Наконец, накопительная развязка. При данном подходе часть полос выделяется из одной и вливается в состав другой в том же количестве. Простейшую версию такой развязки можно наблюдать на ромбообразных дорогах, отходящих вправо, от которых отходят для левого поворота, пролегающие непосредственно у центра. Может такая развязка иметь и более сложную конструкцию. Сложные развязки часто называют «спагетти». К их преимуществам относится отсутствие «враждебных» потоков. Формирование потока происходит перед развязкой. Выезд расположен перед въездом. Такую развязку можно использовать при любых пересечениях любого количества дорог, известны и 6-уровневые развязки. Есть возможность выделять для поворота на большем расстоянии по сравнению с клеверообразными развязками. К недостаткам же относятся сложность конструкции и необходимость дополнительных дорог для разворота.

При проектировании развязок решаются многочисленные задачи геометрических построений, расчета элементов развязок, их увязки друг с другом и т.п. Практические руководства предлагают различные методики решения таких задач, и многие из них требуют громоздких итерационных расчетов, что не способствует поиску рациональных проектных решений.

Конструированию развязок предшествует функциональное проектирование с обоснованием оптимального варианта схемы и основных параметров по критериям безопасности движения, пропускной способности, технико-экономическим показателям. После функционального проектирования переходят непосредственно к конструированию. Именно на этом этапе мы и предлагаем читателю составить собственное мнение о возможностях методов интерактивной координатной геометрии в CREDO, для чего приводим различные примеры конструирования развязок.

Кольцевые развязки

Рассмотрим основные методы и возможности конструирования на примере несложной кольцевой развязки в одном уровне с простыми круговыми съездами, целесообразной при пяти и более сходящихся направлениях движения.

Все методы конструирования основаны на строгих алгоритмах координатной геометрии и представлены в матрице пиктограмм (рис. 1). Буква на пиктограмме представляет ведущий геометрический элемент данного метода, например: C - построение окружностей, L - линий, K - клотоид, O - объектов и т.п.

Последовательность построений при конструировании соответствует известной логике: оси дорог, оси полос, границы полос, кромки проезжей части и т.п. В координатной геометрии CREDO все геометрические элементы конструкций основаны на так называемых базовых элементах - прямых, окружностях, клотоидах, аналитические параметры которых либо определяются координатами точек, на которые опираются эти элементы, либо находятся в процессе интерактивных построений. Части базовых элементов, определяющие конструктивные элементы сооружения, выделяют прямыми отрезками или дугами и отображают на экране или на чертеже соответствующими типами линий, толщиной, цветом. Определенные таким образом элементы построений называют видимыми элементами. Части базовых элементов можно объединить в полилинии (трассы), отображаемые так же, как и видимые элементы. Совокупность трасс и видимых элементов с некоторой неграфической информацией (семантикой) объединяется в объект. Этих не вполне строгих сведений достаточно, чтобы начать конструирование, освоить которое можно только в процессе работы.

Начиная работу и приблизительно определившись с центром кольца, выбирают метод построения прямой линии (см. рис. 1), проводят ось первой из пересекающихся дорог и по подсказке уточняют дирекционный угол. Ось второй дороги проводят, выбрав метод построения прямой линии L под углом к любому геометрическому элементу. По подсказке уточняют угол между осями дорог. Точку О их пересечения как центр будущего кольца фиксируют, выбрав метод нахождения точек пересечения базовых элементов. Остальные оси строят в нужном направлении, переведя курсор в режим «Захват» и захватив точку О.

На рисунке значения дирекционных углов и углов между осями показаны только в методических целях. Конечно, в практической работе проставлять такие размеры в начале построений не следует.

Чтобы превратить отображенные на первом чертеже базовые элементы в видимые линии, необходимо:

  • ·установить параметры видимого элемента (тип линии, ее толщину и цвет, возможно, и условный знак для отображения этой линией какого-либо элемента);
  • ·выбрать метод создания видимого элемента, показанный на этой пиктограмме;
  • ·действуя по подсказкам, оставить в основном окне видимую часть осей дорог, пересекающихся в точке О (рис. 2).

Кромки проезжей части дорог строят методом подобных (эквидистантных) элементов, перемещая ось дороги на нужное расстояние. Буквы CLK на пиктограмме этого метода говорят о том, что таким образом можно эквидистантно (на равное по нормали расстояние) смещать и окружности, и линии, и клотоиды.

Трудность дальнейшего конструирования заключается в том, что нужно согласовать радиус кольца с радиусами правоповоротных съездов. В некоторых практических случаях ведущим параметром служит радиус внешнего кольца, который определяется ограничениями на размеры площадки для строительства развязки. В других случаях за основу берут предельное значение радиуса правоповоротного съезда для обеспечения расчетной скорости. В нашем примере по методическим причинам реализован второй случай, поскольку приемы конструирования здесь несколько более разнообразны. В примере радиус съезда - 15 м, а ширина полосы движения на съезде - 4 м.

Прежде всего строят правоповоротный съезд в самом остром углу - это критичная зона, определяющая величину радиуса кольца сопряжением прямой линии кромки проезжей части дороги B с кромкой проезжей части дороги C. Система предложит пять вариантов схем сопряжения, пиктограммы которых приводятся в диалоговом окне (на иллюстрации - ниже этого окна). Выбрав простой первый метод (вписывание круговой кривой), вводят значение радиуса окружности правоповоротного съезда (17 м = 15 м + 4/2 м). В результате будет построена базовая окружность, на основе которой и конструируется правоповоротный съезд, сопрягающий кромки проезжих частей дорог C и В.

Далее можно строить внешнюю окружность кольца, касающуюся первого правоповоротного съезда. Для этого прежде всего находят эту точку касания - на пересечении биссектрисы угла, в который вписан съезд, с самим съездом. При построении биссектрисы нужное значение дирекционного угла вводят в соответствующем диалоговом окне, сопровождающем метод построения любой линии (рис. 3).

Биссектрису строят как прямую через уже найденный центр пересечения.

Внешнюю окружность кольца конструируют методом построения окружности с центром в точке О и проходящей через построенную ранее точку касания на первом правоповоротном съезде.

В процессе построения в информационном окне фиксировались значения радиуса внешнего кольца, а по завершении построения они исчезли. В любой момент можно узнать параметры любого геометрического элемента - для этого необходимо выбрать пиктограмму информации о параметрах элементов (рис. 4). В нашем примере радиус построенной окружности равен 36 569 м.

Внутреннее кольцо можно построить разными способами (рис. 5):

  1. как окружность с указанным радиусом по местоположению центра;
  2. как окружность заданного радиуса, проходящую через выбранную точку;
  3. как окружность, эквидистантную внешнему кольцу.

Проще строить внутреннее кольцо третьим методом - не нужно вычислять радиус. Границу полос движения на кольце строят также смещением ее от любого кольца, например, на 4 м.

Конструируя сопряжения внешней окружности кольца с границами проезжих частей примыкающих к кольцу дорог, выбирают метод сопряжения элементов окружностями и далее строят все сопряжения примерно так же, как ранее был построен правоповоротный съезд, сопрягающий кромки проезжих частей дорог C и B. Различие лишь в том, что один из сопрягаемых элементов - это всегда внешняя кромка проезжей части кольца, а второй сопрягаемый элемент - граница проезжей части какой-либо из дорог (А, B, C, D, E).

Далее необходимо превратить кромку проезжей части съезда с дороги B на дорогу A в геометрический объект, который в дальнейшем будет именоваться трасса. В CREDO объект типа трасса - не обязательно ось сооружения. Трасса в координатной геометрии - всегда цепочка криволинейных и прямолинейных отрезков, сопряженных друг с другом. С трассой можно выполнять много операций: разрезать, склеивать, отображать пикетаж, изменять вид отображения (цвет и тип линии, тип условного знака), экспортировать в другие проектирующие программы и т.п. Кромка съезда лишь в простейшем случае является частью дуги (рис. 6).

В большинстве случаев кромка съезда - это трасса. Для построения трассы по кромке проезжей части съезда с дороги B на дорогу A используют метод создания трассы с указанием непрерывной цепочки сопряженных или пересекающихся элементов. В нашем случае это - прямолинейная часть кромки проезжей части дороги B, часть круговой кривой поворота направо, внешнее кольцо, часть круговой кривой съезда с кольца на дорогу А, на которой трасса и закончится. По завершении построения трассы от внешнего кольца останется только его видимая часть, остальное исчезнет, но - и это важно - базовый элемент сохранится в памяти компьютера и в любой момент будет доступен для дальнейших построений. Точно так же строят трассы по кромке проезжей части всех остальных съездов.

Внутреннюю границу полосы движения на съезде дороги A на дорогу E конструируют методом построения эквидистантных геометрических элементов; только в этом случае переносят не отдельный элемент, а всю трассу, причем со всеми базовыми элементами, на которых она основана (это еще одно важное свойство трасс).

Конструирование островков безопасности начинают с определения или построения ограничивающих их элементов, затем находят точки пересечения этих элементов по контуру островка и оставляют видимые элементы как границы островков безопасности. На дороге А островок безопасности ограничен:

  • ·внешним кольцом (линия 1);
  • ·левой (по ходу движения) границей правоповоротного съезда с дороги А на внешнюю полосу кольца (линия 2);
  • ·левой (по ходу движения) границей правоповоротного съезда с внешней полосы кольца на дорогу А (линия 3).

Для конструирования границ островка безопасности как разметочных линий устанавливают параметры их отображения, то есть в соответствующей диалоговой панели указывают цвет элемента (рис. 7).

Завершают конструирование кольцевой развязки проставлением пикетажа основных точек закруглений на съездах. Для этого не нужны сложные и громоздкие расчеты. В комплексе CREDO достаточно активизировать метод определения параметров элементов трассы и пикетажа и выбрать трассу, например съезд с дороги B на дорогу A. Далее, устанавливая курсор последовательно на элементы трассы-съезда, в информационном окне получают все характеристики данного элемента: тип элемента, то есть прямую, окружность или клотоиду, параметры элемента, например радиус, и пикетное положение начала и конца элемента на данной трассе.

Завершается проектирование развязки организацией движения. В системе CAD_CREDO можно выбрать из базы нужные знаки, перенести их на стойку и разместить в нужном месте на плане дороги (рис. 8).

В системе ZNAK можно запроектировать знаки, требующие редактирования (названия населенных пунктов, расстояния на схемах организации движения и т.п.), и разместить их на стандартных щитах.

Полностью канализированное пересечение

Цель проектирования канализированного пересечения - выделить отдельные полосы для движения по всем разрешенным направлениям. Основные функциональные требования к конструкции пересечения достигаются:

  1. выбором типа планировочного решения;
  2. обоснованием радиусов правых и левых поворотов, ширины полос движения, размеров переходно-скоростных полос и других элементов.

После функционального проектирования развязки ее конструируют, используя уже изложенные принципы и методы координатной геометрии:

  • ·строят оси пересекающихся дорог и параллельные им прямые - кромки проезжей части и линии, необходимые для расположения направляющих островков на главной дороге; выделяют на второстепенной дороге зону для размещения каплевидного островка, которую будут ограничивать линии, образующие между собой угол, например, 8°, а с осями дорог - 2 и 6°;
  • ·cтроят кромку правоповоротного съезда в остром и тупом углах, сопрягая прямолинейные кромки главной и второстепенной дорог закруглением с параметрами, например: радиус круговой вставки - 25 м, а длина переходных кривых - по 20 м для острого угла и 25 м для тупого;
  • ·элементы наружных кромок правоповоротных съездов объединяют в трассы (рис. 9);
  • ·левую границу левоповоротного съезда с главной дороги на второстепенную строят как составное закругление с радиусом круговой вставки 25 м и с переходными кривыми по 20 м. Левую границу левоповоротного съезда сo второстепенной дороги на главную строят как биклотоиду с радиусом 15 м в ее середине. Завершают конструирование полос движения на съездах построением эквидистантных трасс, смещенных на ширину полосы движения с учетом уширения, например на 4,25 м относительно уже построенных границ;
  • ·островок безопасности в остром углу строят, отсекая (превращая в невидимые линии) ненужные части трассы, ограничивающие островок (рис. 10);
  • ·каплевидные островки строят аналогично;
  • ·завершают построение, скругляя островки безопасности и вписывая в их углы кривые с радиусом 0,75 м. Элементы разметки выделяют цветом и типом линии (рис. 11
Понравилось? Лайкни нас на Facebook