Электрогенератор для дачи - как выбрать правильно. Лучшие электрогенераторы для дачи и дома. Газомоторное топливо: экономичность, экологичность и технологичность

Оценочные показатели. Основной показатель топливной экономичности автомобиля - путевой расход топлива - расход, отнесенный к пройденному расстоянию. В нашей стране расстояние 100 км принято эталонным. Таким образом, размерность показателя топливной экономичности следующая: л/100 км.

Удельный расход топлива - это путевой расход топлива с учетом массы перевезенного груза (пассажиров), л/(т 100 км).

Государственные стандарты и Правила ЕЭК ООН устанавливают следующие оценочные показатели топливной экономичности автомобиля:

  • контрольный расход топлива (КРТ);
  • расход топлива в магистральном ездовом цикле на дороге (РТМЦ);
  • расход топлива в городском ездовом цикле на дороге (РТГЦд);
  • расход в городском цикле на стенде (РТГЦ);
  • топливная характеристика установившегося движения (ТХ);
  • топливно-скоростная характеристика на магистрально-холмистой дороге (ТСХ);
  • удельный контрольный расход топлива для грузовых автомобилей (УКРТ).

Приведенные оценочные показатели топливной экономичности не нормированы. Они используются для сравнительной оценки автомобилей. Условия испытаний по определению топливной экономичности регламентируются стандартами.

КРТ определяют для всех видов автомобилей, как правило, при двух (в диапазоне 40... 120 км/ч) регламентируемых скоростях движения по прямой горизонтальной дороге на высшей передаче. Для различных категорий автотранспортных средств установлены свои скорости движения при испытаниях. КРТ приводят в документации на автомобиль в качестве оценочного.

РТМЦ измеряют для всех категорий автотранспортных средств, кроме городских автобусов, при движении по измерительному участку с соблюдением заданных режимов движения: разгон, торможение,

Рис. 96.

равномерное движение, переключение передач. Пример карты цикла приведен на рис. 96.

РТГЦд определяют для автотранспортных средств всех категорий, кроме магистральных автопоездов, междугородных и туристских автобусов, по методике измерения РТЦМ. Отличие состоит в режиме движения, определяемого картой цикла.

РТГЦ определяют только для автомобилей, вес которых (7 а

ТХ и ТСХ представляют собой графики (рис. 97) зависимости расхода топлива Q s от скорости в заданных дорожных условиях. Зависимость ТХ строят по результатам измерений при установившемся движении на высшей передаче по горизонтальной дороге. А характеристику ТСХ получают при движении по холмистой магистральной дороге с заданным профилем. Эта характеристика строится для магистральных автопоездов, междугородных и туристских автобусов в зависимости от допустимой скорости у доп при движении по специальной скоростной дороге с вероятностным распределением уклонов и некоторыми дополнительными условиями.

УКРТ грузового автомобиля предназначен для сравнительной оценки автомобилей по топливной экономичности. Его определяют при движении автомобиля с установившейся скоростью 60 км/ч на горизонтальной дороге с твердым покрытием.

Расчет топливной экономичности. Топливную экономичность автомобиля строят по предложенной Е.А. Чудаковым зависимости Q s =Л v a) (рис. 98) при движении с постоянной скоростью по дорогам с разным коэффициентом сопротивления.

При тяговом расчете находят путевой расход топлива Q s , который по определению представляет собой расход топлива на 100 км пути, л/100 км. Чтобы рассчитать расход топлива Q s , необходимого для преодоления пути длиною 100 км, следует часовой расход топлива

Рис. 97.

Рис. 98.

двигателем G T умножить на время t, за которое автомобиль пройдет 100 км:

После замены получим

где G T , g e - часовой и удельный расход топлива в данных условиях по нагрузке и дорожным условиям; N e - эффективная мощность двигателя, необходимая для перемещения автомобиля в данных условиях по нагрузке и дорожным условиям; v a - скорость автомобиля.

Удельный расход топлива в соответствии с определением будет равен

Чтобы учесть при расчете топливной экономичности автомобиля работу с неполной загрузкой двигателя и с разным скоростным режимом, необходимо иметь соответствующие зависимости (рис. 99, а), отражающие удельный расход топлива на частичных нагрузочных и скоростных режимах. Их получают из нагрузочной и внешней скоростной характеристик.

Существуют и другие способы коррекции g e . Так, И.С. Шлиппе предложил формулу

где g N - удельный расход топлива при максимальной мощности; к х - коэффициент, учитывающий загрузку двигателя; к ш - коэффициент, учитывающий скоростной режим работы двигателя.

Для определения коэффициентов, входящих в эту формулу, используют графики (рис. 99, б), также предложенные И.С. Шлиппе.

Эффективную мощность двигателя, необходимую для подстановки в формулу (131), определяют как сумму

Каждую из составляющих этой суммы рассчитывают по рассмотренным ранее зависимостям для конкретных условий работы автомобиля.

Характеристики строят в координатах Как видно из

рис. 98, путевой расход топлива зависит от скорости движения автомобиля и дорожных условий, характеризуемых коэффициентом ц/. Каждым дорожным условиям соответствует свой минимум Q s . Чем хуже дорога, тем больше сила сопротивления качению и составляющая Л/Д133), тем меньшей скорости автомобиля соответствует минимальный расход топлива. Наряду с этим, при движении с меньшей скоростью возрастает время прохождения участка дороги и вследствие этого - расход топлива.

Слева семейство зависимостей на рис. 98 ограничено

минимально устойчивой скоростью движения автомобиля. В общем случае эти скорости различны для разных дорожных условий. Однако условно их принимают одинаковыми и при всех значениях ц/ расчет ведут по co min . Справа и сверху характеристика ограничивается кривой, соответствующей расходу топлива по скоростной внешней характеристике двигателя.

Рис. 99. Графики для определения удельного расхода топлива: а - в зависимости от загрузки по мощности; 6 - коэффициенты к и к ш в зависимости от нагрузки и частоты вращения вала двигателя"

Способы повышения топливной экономичности. Известно, что только 24...30% энергии, образовавшейся в результате сгорания топлива в бензиновом двигателе, превращается в эффективную мощность. Из этих 24...30% примерно 10% расходуется на трение в трансмиссии. Таким образом, к ведущим колесам автомобиля подводится около 20...25% энергии сожженного топлива. На легковых автомобилях большого класса общие потери энергии на пути от двигателя к колесам еще выше и, по зарубежным данным, достигают 88%.

Способы повышения экономичности двигателей рассмотрены в курсе теории двигателей внутреннего сгорания. Рассмотрим другие конструктивные параметры и эксплуатационные факторы, определяющие топливную экономичность автомобиля.

Удельная мощность а вто м о б и л я. В соответствии с рис. 100 можно получить оптимальное значение удельной мощности автомобиля, при которой расход топлива будет минимальным. При снижении N = N emax /G a (см. рис. 100) относительно оптимального значения расход топлива увеличивается в основном вследствие ухудшения динамичности автомобиля и более частого

Рис. 100.

использования промежуточных ступеней в коробке передач. При увеличении N yjl относительно оптимального значения расход Q s повышается, потому что двигатели завышенной мощности обладают завышенным часовым расходом топлива. Кроме того, в этом случае двигатель работает с малой нагрузкой, поэтому повышаются относительные механические потери (см. рис. 49), снижается индикаторный КПД двигателя.

При одинаковой мощности двигателей топливная экономичность автомобилей зависит от запаса крутящего момента или коэффициента приспособляемости к м. По данным НАМИ, изменение к м от 1,07 до 1,13 приводит к увеличению средней скорости на 10% и уменьшению расхода топлива на 7...8%. Это объясняется лучшей приспособленностью двигателя к преодолению временных перегрузок как при установившемся режиме работы, так и при разгоне.

Грузоподъемность автомобиля. На рис. 89 представлен график изменения отношения грузоподъемности автомобиля к его полной массе (т г /т а = к г) в зависимости от т а. Рисунок показывает, что с увеличением полной массы автомобиля т а грузоподъемность повышается в большей степени. Следовательно, по сравнению с автомобилями меньшей грузоподъемности у большегрузных автомобилей из общего количества топлива, затраченного на одну ездку, большая часть используется на перевозку груза и меньшая - на перемещение самого автомобиля (без груза).

Рассмотрим, как изменятся составляющие уравнения баланса мощности (133) при повышении грузоподъемности автомобиля.

Мощность N Tp , возрастет, но не прямо пропорционально увеличению грузоподъемности, а с некоторым отставанием. Мощность также увеличится не прямо пропорционально, а в меньшей мере, в соответствии с законом уменьшения коэффициента сопротивления качению при увеличении веса автомобиля (см. п. 2.4, рис. 19).

Мощность практически не должна измениться с увеличением грузоподъемности или может повыситься незначительно.

Коэффициент к ш не зависит от грузоподъемности. Габаритные размеры по высоте и ширине, определяющие площадь поперечного сечения, могут быть несколько разными только при сравнении автомобилей малой грузоподъемности с автомобилями высокой грузоподъемности. Габаритные размеры автомобилей большой грузоподъемности ограничены стандартом. Скорости автомобиля можно принять одинаковыми.

Составляющая N,- возрастет прямо пропорционально увеличению полной массы автомобиля т а.

Следовательно, перевозки автомобилями большой грузоподъемности более выгодны по соображениям топливной экономичности, если отсутствуют другие ограничения по их применению.

Наибольшая экономия топлива на единицу массы перевозимого груза отмечается при использовании автопоездов. Объясняется это главным образом лучшим использованием массы.

Сопротивление воздуха. Аэродинамическое сопротивление современных автомобилей в несколько раз превышает сопротивление идеальных форм, достигнутых чаще всего в исследовательских целях. Основная причина этого заключается в том, что к форме автомобиля предъявляют много требований, вытекающих из его функционального назначения: вместительный пассажирский салон, определяющий габариты поперечного сечения автомобиля; кузов и различные элементы, которые увеличивают сопротивление воздуха. Большое значение имеет современный дизайн, который не всегда согласуется с хорошими аэродинамическими формами. Расход топлива крупногабаритного автомобиля на преодоление сопротивления воздуха в 3 раза больше, чем малолитражного.

Основные способы снижения сопротивления воздуха следующие. Автомобиль в целом должен быть наклонен вперед на 1...2 0 . В плане передняя часть автомобиля должна иметь некоторое сужение вперед. В боковой проекции капот должен быть покатым. Обращенные вперед кромки и углы на капоте, крыльях, фарах, окантовке ветрового стекла должны быть скруглены, чтобы предотвратить срыв потока воздуха. Задняя часть автомобиля должна быть обтекаемой. Низ кузова должен иметь поддон, закрывающий по возможности выступающие элементы и выполняющий функции экрана.

Снижение коэффициента сопротивления воздуха k w на 10% уменьшает расход топлива примерно на 3% при езде по смешанному циклу и значительно больше - при движении по трассе с большой скоростью. Поэтому если обтекатели, показанные на рис. 82, установлены, то путевой расход топлива снижается существенно.

Сопротивление качению. Установлена эмпирическая линейная зависимость между снижением сопротивления качению и

повышением топливной экономичности, выражающаяся отношением 5:1. Это означает, что уменьшение силы сопротивления качению на 5% снижает расход топлива на 1 %. Основную часть потерь на качение автомобильного колеса составляют гистерезисные потери (до 90%). За последнее время достигнуто существенное снижение сопротивления качению автомобильного колеса за счет следующих основных факторов: применение более легких шин вследствие уменьшения массы автомобилей; повышение давления в шинах; более широкое применение радиальных шин и материалов с меньшими гистерезисными потерями. Благодаря этому достигнут коэффициент сопротивления качению автомобильных шин на дорогах с твердым покрытием 0,007...0,015.

В дальнейшем сопротивление качению будет снижаться также за счет совершенствования конструкции шины и уменьшения гистерезисных потерь в ней, применения новых материалов, снижения массы автомобиля.

Параметры трансмиссии. Помимо механического КПД, основными параметрами трансмиссии, оказывающими влияние на топливную экономичность автомобиля, являются: передаточное число главной передачи; передаточные числа и диапазон передаточных чисел коробки передач; закономерность построения ряда передаточных чисел. При выборе этих параметров стремятся обеспечить наиболее высокие средние скорости движения и наименьшие расходы топлива в тех условиях эксплуатации, для которых автомобиль предназначен. Рассмотрим влияние на топливную экономичность передаточного числа трансмиссии / тр.

На рис. 101 представлена многопараметровая (универсальная) характеристика двигателя, на которой нанесено семейство гипербол г, каждая из которых представляет совокупность произведений М к со д =N e = const, т.е. это линии постоянной мощности. Другое семейство кривых д - линии постоянного удельного расхода топлива.

На многопараметровой характеристике можно провести линию еж, которая будет охватывать широкий диапазон режимов работы двигателя по мощности, но каждый из этих режимов будет реализован при минимальном удельном расходе топлива. С целью достижения высокой топливной экономичности (лучше бесступенчатой) при изменении нагрузки и при переходе с одной кривой N e = const на другую передаточное число трансмиссии должно изменяться так, чтобы угловая скорость вала двигателя со д всегда соответствовала точке (зоне) пересечения кривой N e = const с линией минимального удельного расхода топлива еж.

Рассмотренная схема служит лишь иллюстративным примером. Современные системы на основе микропроцессорной техники позволяют реализовать различные программы согласованного регули-

Рис. 101.

рования скоростных и нагрузочных режимов работы двигателя и трансмиссии с целью достижения высокой топливной экономичности автомобилей.

Следует иметь в виду, что движению автомобиля на прямой передаче соответствует КПД трансмиссии примерно на 4% выше (КПД двух шестеренчатых пар, находящихся одновременно в зацеплении), чем КПД при движении на остальных передачах. Поэтому из соображений топливной экономичности целесообразно применять коробки передач с прямой высшей передачей, так как 85...90% времени автомобиль работает на высшей передаче.

Правила эксплуатации. Как отмечено выше, в целях экономии топлива всегда выгоднее перевозить грузы большегрузными автомобилями, потому что топливная экономичность заметно повышается при увеличении полезной нагрузки. В эксплуатации это можно достигнуть также применением автопоездов.

Существенно большей экономичностью обладают автомобили с дизелями по сравнению с автомобилями, оснащенными бензиновыми двигателями.

Техническое состояние автомобиля влияет на силу сопротивления качению и сопротивление воздуха, а следовательно, и на удельный расход топлива. Способы снижения сопротивления воздуха проана

лизированы ранее. Сопротивление качению зависит главным образом от давления воздуха в шинах и состояния протектора. Важно, чтобы давление воздуха в шинах по осям было одинаковым и соответствовало инструкции завода-изготовителя.

На топливную экономичность карбюраторного двигателя влияет уровень топлива в поплавковой камере карбюратора, угол опережения зажигания, зазоры в прерывателе, состояние свечей, фазы газораспределения, тепловой режим эксплуатации.

Выбор режима движения. Расход топлива существенно зависит от умения водителя выбрать экономичный режим работы двигателя в данных дорожных условиях, а также использовать кинетическую энергию разгона при движении под уклон для преодоления подъемов. Из условий экономии топлива можно рекомендовать следующие приемы вождения автомобиля:

  • на горизонтальном участке дороги соблюдать скорость движения на 25% ниже максимальной;
  • средняя частота вращения вала двигателя должна быть на 30.. .40% ниже номинальной;
  • по возможности использовать более высокие передачи;
  • обеспечивать равномерное движение автомобиля без резких разгонов и торможений;
  • по возможности реже переключать передачи и использовать тормоза.

Поскольку экономичность двигателя всегда выше в режиме работы, соответствующем большой загрузке по крутящему моменту при низкой частоте вращения коленчатого вала, то целесообразно как можно раньше включать высокую передачу.

Современный рынок автомобилей представляет на сегодняшний день достаточно большое количество типов кузова. Среди них седаны, пикапы, . Но современные водители всё чаще отдают предпочтение кроссоверам. Это объясняется их серьёзными преимуществами среди других автомобилей. Это комфортабельность, широкий обзор, вместительность, высокая посадка, просторный багажник и другие. Они отлично подходят для езды как в больших городах, так и по пересечённой местности. Кроссоверы всё больше заполняют отечественный рынок, и ассортимент постоянно радует новыми моделями.

Для того чтобы решить, какой кроссовер приобрести, необходимо взять во внимание среду, по который по которой будущий автовладелец планирует ездить. Также принимается за внимание стоимость и экономичность по расходу топлива.

Чтобы помочь определится с выбором, мы подготовили ТОП 10 самых экономичных кроссоверов в разных категориях.

Самый маленький по расходу топлива

При выборе внедорожника следует учитывать и его экономичность. Чтобы сделать осознанный выбор, а не оставить половину машины за год , следует знать, какие самые экономичные кроссоверы по расходу топлива. Поэтому в следующем рейтинге представлены автомобили с наименьшим расходом горючего.

  • Suzuki СХ 4. Данный паркетник является одним из самых экономичных среди автомобилей этого класса. Расход топлива составляет всего 6 литров на 100 километров по трассе.

  • Renault Duster. Один из самых экономичных паркетников с дизельным двигателем расходует 5 литров. Если он укомплектован бензиновым двигателем, расход увеличивается до 7,6 л на трассе.

  • Mazda CX5. Производитель заявляет, что этот кроссовер потребляет всего 5,3 литра бензина на 100 км трассы. Данная модель значительно уменьшила расход по сравнению с со своими предшественницами.

  • Ford Kuga. Это модель от известного американского производителя практически ничем не отличается от аналогов. Но любители этой марки с удовольствием отметят, что автомобиль с двигателем 1,6 л потребляет 8,3 л в городе и 5,6 по трассе.

  • KIA Soul. Корейский производитель выпустил кроссовер, предназначенный для городских дорог. Улучшенные внешний вид и технические характеристики автомобиля – это не единственное, что изменил производитель в новой модели. Бензиновый двигатель на 124 л. с., шестиступенчатая МКПП плюс смешанный расход топлива 7,2 л характеризуют высокую надёжность и экономичность автомобиля.

Если вы намерены купить экономичный паркетник, то советуем ознакомиться ещё с некоторыми моделями.

  • Mercedes GLC. В рейтинге большинства популярных источников считается самым надёжным автомобилем своего класса. Вопреки своим размерам, потребление горючего на 100 км достигает всего 5-7 литров в зависимости от модели линейки. Внедорожники Мерседес ДжиЭлСи оснащены современной электроникой, в том числе видеокамерой с углом обзора в 360 градусов, что дает возможность парковаться безопасно и беспрепятственно. Полный привод допускает езду как в городских условиях, так и по грунтовым дорогам. Цена такого кроссовера достигает рублей в базовой комплектации.

  • Audi Q5. Надёжный и качественный автомобиль. Преимуществ у паркетника очень много, главные из них – это большие габариты, полный привод, быстрый разгон, разные коробки передач, большой багажник. Затраты по топливу составляют до 15 литров по городу и 8-10 на трассе, достаточно неплохой результат для 225 лошадиных сил. Высокий дорожный просвет обеспечит беспроблемную езду по пересечённой местности. Такой кроссовер отлично подойдет для путешественников из-за экономичности расхода топлива на трассе. Стоимость Ауди Кью 5 не превышает 2,5 миллионов рублей.

  • Toyota RAV4. Простой в управлении паркетник с удобной посадкой водителя имеет вместительный багажник. Продуманность дизайна приводит его в десятку рейтинга лучших. Из недостатков большинство автолюбителей отмечает простоту оформления салона. Расход топлива в среднем 9 литров: по трассе 8, по городу 11. В отзывах мнения разнятся: некоторые говорят о 14 литрах с охлаждением. Цена кроссовера в модификации 2.0 MT 2WD достигает 1280000 рублей.

  • Volkswagen Tiguan. Этот практичный автомобиль демонстрирует прекрасную управляемость, имеет высокую посадку и широкий обзор. Машина оснащена роботизированной коробкой с двойным сцеплением, что обеспечивает малую трату на бензин, 7-10 литров, в зависимости от трассы. Прогрессивные технологии TSI и TDI делают его популярным среди большинства автовладельцев. Стоимость составляет от 1200000 рублей.

  • Subaru Forester. Этот паркетник выделяется лёгкой регулируемостью и прочностью. Производимый в Японии кроссовер считается самым лучшим полноприводным внедорожником в мире. Расход топлива на шоссе 7 литров, а городе будет ездить в среднем на 11. Отлично подходит для продолжительных переездов.

  • Honda CR-V. Машина отличается повышенной комфортностью, которая удовлетворит даже самого требовательного водителя, а также мягкостью движения. Это достигается за счёт гидравлической муфты, гидронасосов и особенно комфортабельных амортизаторов и пружин. Паркетник не может похвалиться своей вездеходностью, так как небольшой. Средний показатель экономичности по трассе, с учётом тяжёлой январской дороги (из комментария владельца) составил около 8 литров на 100 км. Стоимость начинается от 1500000 рублей в простой версии.

  • Kia Sportage. Кроссовер характеризуется высокой степенью безопасности и экологичности. Выиграл 28 различных наград. Среди них «Золотой клаксон-2010» и «Лучший выбор с точки зрения безопасности». Потребление горючего составляет 9-16 литров по городу и 5-8 литров по трассе, что делает паркетник одним из самых экономичных внедорожников. Цена начинается от 1290000 рублей.

  • Volvo XC90. Главные преимущества этой автомашины – вместительность салона, в который может поместиться до семи человек, и 6-ступенчатый автомат, который обеспечит хорошую управляемость. Он получил множество наград, среди которых «Североамериканский внедорожник года». Затраты по топливу на механической коробке передач около 10.5 литра при поездке в городе, по ровной дороге где-то 7, в смешанном цикле показатель составляет 8.3 литра. В автоматической коробке расходы внедорожника 11.8 л. – город и 7.4 л. – не город. Большим минусом является его высокая стоимость, от трех миллионов рублей.

  • Mercedes GLC Coupe. Очень популярная модель, особенно среди представительниц прекрасного пола, выделяется своей элегантностью. Имеет внушительные размеры и большую мощность. Несмотря на это, довольно экономичный по расходу горючего. Всего 11 литров на 100 км в городе и 8,5 за городом.

Любителям автоматической коробки передач

Для тех, кто любит автоматические коробки передач, предлагаются следующие недорогие внедорожники с АКПП:

  1. Lada XRay – российский производитель предлагает недорогой автомобиль, который обладает высокой проходимостью по бездорожью страны. Полный привод и небольшая стоимость являются главными преимуществами этого внедорожника.

  2. Chery Tiggo – кроссовер с автоматической коробкой, который оснащён всей необходимой электроникой, передним приводом, вместительным багажником и просторным салоном, высокой посадкой, также является одним из самых экономичных авто.
  • 3.2. Силы, действующие на автомобиль при движении
  • 3.3. Мощность и момент, подводимые к ведущим колесам
  • 3.4. Потери мощности в трансмиссии. Кпд трансмиссии
  • 3.5. Радиусы колес автомобиля
  • 3.6. Скорость и ускорение автомобиля
  • 3.7. Реакции дороги, действующие при движении на колеса автомобиля
  • 3.8. Тяговая сила и тяговая характеристика автомобиля
  • 3.9. Тяговая характеристика автомобиля с дополнительной коробкой передач
  • 3.10. Сила и коэффициент сцепления колес автомобиля с дорогой
  • 3.11. Силы сопротивления движению и мощности, затрачиваемые на их преодоление
  • Сила сопротивления качению
  • Коэффициент сопротивления качению
  • Сила сопротивления подъему
  • Сила сопротивления дороги
  • Сила сопротивления воздуха
  • Коэффициент учета вращающихся масс
  • 3.12. Уравнение движения автомобиля
  • 3.13. Силовой баланс автомобиля
  • 3.14. Силовой баланс автомобиля при различной нагрузке
  • 3.15. Динамические факторы автомобиля
  • 3.16. Динамическая характеристика автомобиля
  • 3.17. Динамический паспорт автомобиля
  • 3.18. Динамический паспорт автопоезда
  • 3.19. Мощностной баланс автомобиля
  • 3.20. Степень использования мощности двигателя
  • 3.21. Разгон автомобиля
  • Ускорение при разгоне
  • Время и путь разгона
  • 3.22. Динамические нормальные реакции на колесах автомобиля
  • 3.23. Динамическое преодоление подъемов
  • 3.24. Движение накатом
  • 3.25. Влияние различных факторов на тягово-скоростные свойства автомобиля
  • 4. Топливная экономичность
  • 4.1. Измерители топливной экономичности
  • 4.2. Уравнение расхода топлива
  • 4.5. Топливная экономичность автопоезда
  • 4.6. Нормы расхода топлива
  • 4.7. Влияние различных факторов на топливную экономичность автомобиля
  • 5. Тягово-скоростные свойства и топливная экономичность автомобиля с гидропередачей
  • 5.1. Гидромуфта
  • 5.2. Гидротрансформатор
  • 5.4. Влияние гидропередачи на тягово-скоростные свойства автомобиля
  • 5.5. Показатели топливной экономичности автомобиля с гидропередачей
  • 5.6. Влияние гидропередачи на топливную экономичность автомобиля
  • 5.7. Повышение тягово-скоростных свойств и топливной экономичности автомобиля с гидропередачей
  • 6. Тяговый расчет автомобиля
  • 6.1. Поверочный тяговый расчет
  • 6.2. Проектировочный тяговый расчет
  • 6.3. Влияние передаточного числа главной передачи на максимальную скорость автомобиля
  • 6.6. Тяговый расчет автопоезда
  • 6.7. Особенности тягового расчета автомобиля с гидропередачей
  • 7. Тормозные свойства
  • 7.1. Измерители тормозных свойств
  • 7.2. Уравнение движения при торможении
  • 7.3. Экстренное торможение
  • 7.4. Время торможения
  • 7.5. Тормозной путь
  • 7.6. Коэффициент эффективности торможения
  • 7.8. Служебное торможение
  • 7.10. Торможение автопоезда
  • 7.11. Влияние различных факторов на тормозные свойства автомобиля
  • 8. Управляемость
  • 8.1. Поворот автомобиля
  • 8.3. Увод колес автомобиля
  • 8.4. Колебания управляемых колес
  • 8.5. Стабилизация управляемых колес
  • 8.6. Установка управляемых колес
  • 8.7. Влияние различных факторов на управляемость автомобиля
  • 9. Поворачиваемость
  • 9.1. Виды поворачиваемости автомобилей
  • 9.2. Критическая скорость автомобиля по уводу
  • 9.3. Коэффициент поворачиваемости автомобиля
  • 9.4. Диаграмма устойчивости движения автомобиля
  • 9.5. Влияние различных факторов на поворачиваемость автомобиля
  • 10. Маневренность
  • 10.1. Показатели маневренности
  • 11. Устойчивость
  • 11.1. Показатели поперечной устойчивости
  • 11.2. Поперечная устойчивость на вираже
  • 11.3. Занос автомобиля
  • 11.5. Продольная устойчивость автопоезда
  • 11.6. Влияние различных факторов на устойчивость автомобиля
  • 12. Проходимость
  • 12.1. Габаритные параметры проходимости
  • 12.2. Тяговые и опорно-сцепные параметры проходимости. Комплексный фактор проходимости
  • 12.3. Влияние различных факторов на проходимость автомобиля
  • 13. Плавность хода
  • 13.1. Колебания автомобиля
  • На пассажиров и водителя
  • 13.2. Измерители плавности хода
  • 13.3. Колебательная система автомобиля
  • 13.4. Приведенная жесткость подвески
  • 13.5. Свободные колебания автомобиля
  • 13,6. Парциальные частоты колебаний
  • 13.7. Свободные колебания автомобиля с учетом неподрессоренных масс
  • 13.8. Свободные колебания автомобиля с учетом затухания
  • 13.9. Свободные колебания автомобиля с учетом неподрессоренных масс и затухания
  • 13.10. Вынужденные колебания автомобиля
  • 14. Экологичность
  • 14.2. Меры по снижению токсичности двигателей
  • 14.3. Малотоксичные и нетоксичные двигатели
  • 14.4. Электромобили
  • 14.6. Меры по снижению уровня шума
  • 14.7. Влияние различных факторов на экологичность автомобиля
  • 5. Тягово-скоростные свойства и топливная
  • 4. Топливная экономичность

    Топливная экономичность автомобиля имеет важное значение в эксплуатации, так как топливо - один из основных эксплуата­ционных материалов, потребляемый автомобилем в большом ко­личестве. Себестоимость перевозок существенно зависит от топ­ливной экономичности автомобиля, поскольку затраты на топли­во составляют примерно 10... 15 % всех затрат на перевозки. По­этому чем выше топливная экономичность автомобиля, тем меньше расход топлива и ниже себестоимость перевозок.

    4.1. Измерители топливной экономичности

    Топливная экономичность автомобиля оценивается двумя груп­пами измерителей. К первой группе относятся измерители топ­ливной экономичности самого автомобиля, ко второй - измери­тели топливной экономичности двигателя автомобиля.

    Измерителями первой группы являются расход топлива в лит­рах на единицу пробега автомобиля (путевой расход топлива) q n , л на 100 км, и расход топлива в граммах на единицу транспортной работы q n , г/(т∙км) или пасс.-км.

    К измерителям второй группы относятся расход топлива в ки­лограммах за час работы двигателя (часовой расход топлива) G т, кг/ч, и удельный эффективный расход топлива в граммах на ки­ловатт-час q e , г/(кВт∙ч).

    Рассмотрим указанные измерители топливной экономичности.

    Путевой расход топлива

    где Q - общий расход топлива, л; S a - пробег автомобиля, км.

    В указанном выражении единицей пробега являются 100 км пути (принято для автомобилей в России и многих европейских стра­нах).

    Путевой расход топлива - легко определяемая величина, но не учитывающая полезной работы автомобиля. Так, например, ав­томобиль, который перевозит груз, расходует больше топлива,

    чем автомобиль без груза. Поэтому согласно формуле он оказыва­ется менее экономичным по сравнению с автомобилем, соверша­ющим порожний рейс.

    Расход топлива на единицу транспортной работы

    ,

    где m rp - масса перевезенного груза (число пассажиров), кг (пасс); S rp - пробег автомобиля с грузом, км; р т - плотность топлива, кг/л.

    Расход топлива на единицу транспортной работы более пра­вильно оценивает топливную экономичность автомобиля. Однако практическое использование этой величины сопряжено с опреде­ленными трудностями вследствие того, что объем транспортной работы, выполненной автомобилем, не всегда поддается точному измерению.

    Часовой расход топлива

    ,

    где T д - время работы двигателя, ч.

    Удельный эффективный расход топлива

    ,

    где N e - эффективная мощность двигателя, кВт.

    С учетом удельного эффективного расхода топлива определим его путевой расход:

    ,

    где величина g e выражена в г/(кВт∙ч), N e - в кВт, a v - в м/с.

    4.2. Уравнение расхода топлива

    В процессе движения автомобиля эффективная мощность дви­гателя затрачивается на преодоление сил сопротивления движе­нию. Для ее определения воспользуемся уравнением мощностного баланса автомобиля:

    .

    Подставив найденную величину N e в выражение для путевого расхода топлива, получим уравнение расхода топлива автомоби­лем

    В этих выражениях мощность представлена в кВт, сила - в Н, а скорость - в м/с.

    Из уравнения расхода топлива следует, что путевой расход топ­лива зависит от топливной экономичности двигателя (g e ), техни­ческого состояния шасси (η тр), дорожных условий (Р д), скорости движения и обтекаемости кузова (Р в), нагрузки и режима движе­ния (Р и).

    При использовании уравнения расхода топлива для определе­ния путевого расхода топлива в различных дорожных условиях должна быть известна зависимость удельного эффективного рас­хода топлива от степени использования мощности двигателя при разных значениях угловой скорости коленчатого вала. Такая зави­симость для бензинового двигателя приведена на рис. 4.1.

    Из этого рисунка следует, что удельный эффективный расход топлива g e существенно зависит от степени использования мощ­ности двигателя И и в меньшей степени - от угловой скорости коленчатого вала ω е . При увеличении степени использования мощности двигателя и снижении угловой скорости коленчатого вала g e уменьшается. Возрастание удельного эффективного расхода топлива при низкой степени использования мощности двигателя вызвано уменьшением механического коэффициента полезного действия двигателя и ухудшением условий для сгорания смеси в цилиндрах. Удельный эффективный расход топлива также несколь­ко возрастает при высокой (близкой к полной) степени исполь­зования мощности из-за обогащения горючей смеси.

    Рис. 4.1. Зависимости удельного эффектив­ного расхода топлива g e от степени исполь­зования И мощности двигателя при разных значениях угловой скорости коленчатого вала ω е :

    ω е 1 - ω е 3 - значения угловой скорости коленча­того вала двигателя

    4.3. Топливно-экономическая характеристика автомобиля

    Топливно-экономической характеристикой автомобиля назы­вается зависимость путевого расхода топлива от скорости при рав­номерном движении автомобиля по дорогам с разным сопротив­лением.

    Топливно-экономическая характеристика позволяет определять расход топлива по известным значениям скорости движения и коэффициента сопротивления дороги. Она может быть построена для любой передачи, однако обычно ее строят для высшей пере­дачи.

    На рис. 4.2 представлена топливно-экономическая характерис­тика автомобиля для трех различных дорог с разными коэффици­ентами сопротивления, причем ψ 1 < ψ 2 < ψ 3 .

    Каждая кривая топливно-экономической характеристики име­ет три характерные точки - a , b и с.

    Точка а соответствует минимальной устойчивой скорости дви­жения автомобиля.

    Точка b (точка минимума) определяет наименьший расход топ­лива q min при движении автомобиля по дороге с определенным коэффициентом сопротивления ψ. Скорость, соответствующая этой точке, является оптимальной для данной дороги с точки зрения топливной экономичности.

    Точка с характеризует расход топлива при его полной подаче, т.е. при полной нагрузке двигателя. Она соответствует максималь­но возможной скорости движения на данной дороге. Кривая, про­веденная через точки c 1 , с 2 и с 3 , отвечает расходу топлива при полной нагрузке двигателя.

    Из рис. 4.2 видно, что каждому значению сопротивления доро­ги соответствуют определенный минимальный расход топлива, оптимальная и максимально возможная скорости движения авто­мобиля. При возрастании сопротивления дороги увеличивается рас­ход топлива, а эти скорости уменьшаются.

    Рис. 4.2. Топливно-экономическая характеристика автомобиля:

    ψ 1 - ψ 3 - значения коэффициента сопро­тивления дороги, соответствующие трем кривым путевого расхода топлива; а 1 - а 3 - точки, отвечающие минимальной устой­чивой скорости движения v min ; b 1 - b 3 - точки минимума кривых; с 1 - с 3 - точки, соответствующие максимальной скорос­ти движения по каждой дороге; q min , v эк1 , v max 1 – минимальный расход топлива, оп­тимальное и максимальное значения ско­рости движения по дороге, характеризуе­мой коэффициентом ψ 1 .

    Хотя движение автомобиля с оптимальной скоростью сопро­вождается наименьшим расходом топлива, из этого не следует, что при выполнении транспортной работы необходимо двигаться с указанной скоростью. При выборе скорости движения нужно исхо­дить не из условий, обеспечивающих топливную экономичность, а из времени перевозок, безопасности движения, сохранности груза и комфортабельности пассажиров. Так, например, увеличение ско­рости движения приводит к повышению производительности ав­томобиля и уменьшению себестоимости перевозок.

    Представленная топливно-экономическая характеристика ти­пична для автомобилей с бензиновыми двигателями. Аналогич­ный вид имеет и топливно-экономическая характеристика авто­мобилей с дизелями. Ее отличительной особенностью является менее крутой подъем кривых в области низких значений скорости движения, что можно объяснить более высокой экономичностью дизелей при малой угловой скорости коленчатого вала.

    4.4. Построение топливно-экономической характеристики

    Существует несколько способов построения топливно-эконо­мической характеристики автомобиля:

      по результатам дорожных испытаний;

      по результатам стендовых испытаний;

      приближенный расчетный способ.

    В первом и втором случаях топливно-экономическая характе­ристика строится на основании экспериментальных данных, тог­да как при использовании третьего способа она может быть пост­роена при отсутствии экспериментальных данных. Рассмотрим рас­четный способ построения топливно-экономической характерис­тики автомобиля.

    В соответствии с этим способом удельный эффективный рас­ход топлива определяется по формуле

    g e = g N k ω k И

    где g N - удельный эффективный расход топлива при максималь­ной мощности двигателя, г/(кВт∙ч); k ω - коэффициент измене­ния удельного эффективного расхода топлива в зависимости от угловой скорости коленчатого вала двигателя; k И - коэффициент изменения удельного эффективного расхода топлива в зависимо­сти от степени использования мощности двигателя.

    Удельный эффективный расход топлива при максимальной мощ­ности для бензиновых двигателей составляет 300...340 г/(кВт∙ч), а для дизелей - 220...260 г/(кВт∙ч).

    Коэффициент k ω определяется в зависимости от отношения ω е N угловых скоростей коленчатого вала двигателя при текущем и максимальном значениях мощности:

    k ω

    Коэффициент k И определяется в зависимости от степени ис­пользования мощности двигателя И:

    (бензиновый)

    k И

    Коэффициенты k ω и k И могут быть также найдены по специ­альным графикам, представленным на рис. 4.3.

    Расчет и построение топливно-экономической характеристи­ки выполняют в такой последовательности:


    Рис. 4.3. Графики для определения коэффициентов k И (а ) и k ω (б ): 1 - дизели; 2 - бензиновые двигатели


      задают коэффициент сопротивления дороги у;

      выбирают пять-шесть значений угловой скорости коленчато­- го вала двигателя ω е в диапазоне от ω min до ω m ах;

      для выбранных значений ω е определяют отношения ω е / ω N (зна­- чение ω N известно) и по полученным отношениям находят значе­- ния k ω ;

      для выбранных значений ω е определяют соответствующие скорости движения автомобиля v и для этих скоростей по задан­ному коэффициенту сопротивления дороги ψ находят мощнос­ти, затрачиваемые на преодоление сопротивления дороги N Д и воздуха N B ;

      по внешней скоростной характеристике двигателя для выб­ранных значений ω е определяют эффективную мощность двигате­ля N e или для соответствующих скоростей движения по графику мощностного баланса находят значения тяговой мощности N T на ведущих колесах;

      по известным значениям мощностей N Д + N B и N e (или N T) для каждого значения ω е (или v ) определяют степень использования мощности двигателя И и по полученным значениям находят k И;

      по найденным значениям коэффициентов k ω и k И определяют удельный эффективный расход топлива g e ;

    По полученным значениям g e находят путевой расход топлива q П для дороги с заданным коэффициентом сопротивления ψ, для чего используют уравнение расхода топлива при равномерном движении автомобиля.

    Повторив указанные выше расчеты для других коэффициентов сопротивления дороги ψ, строят топливно-экономическую харак­теристику автомобиля.

    О бесперебойном снабжении электроэнергией дачных поселков и отдаленных таунхаусов в некоторых случаях остается только мечтать. Бесперебойная подача электричества – это не только удобство, но и жизненная необходимость. Отсутствие света – причина остановки котлов отопления. Решит проблему перебоев электроснабжения установка оборудования автономного электроснабжения. Рассмотрим подробно, как выбрать электрогенераторы для дачи.

    Топливо

    Если электропитание нужно постоянно, настоятельно рекомендуем выбрать электрогенератор, работающий на дизельном топливе. Это оптимальный вариант с точки зрения экономичности, если природный газ к даче не подведен. Если же газ в наличии, советуем купить аппарат, работающий на газе: он экономичный и малошумный.

    При необходимости снабжения загородного дома в электрическом токе лишь время от времени, в моменты перебоев, смело покупайте бензиновый агрегат: он отличается низким уровнем шума, простотой и дешевизной: цена такого аппарата не будет «кусаться».

    Мощность

    Оцените ваши потребности в электроэнергии. Если у вас небольшая дачка, и ваши потребности ограничиваются несколькими лампочками, холодильником и телевизором, выбирайте прибор мощностью 2 кВт. Если же нагрузка будет больше, и вам нужно обеспечить электроэнергией дом, оборудованный бытовой техникой, насосом, 10-15 лампочками – без электрогенератора мощностью 6 кВт не обойтись.

    Многие дома оборудованы, помимо бытовой техники, электрокотлами, кондиционерами, электроплитами. В этом случае придется покупать однофазный генератор мощностью 10 кВт или выше. Для мастерских с трехфазными сварочными аппаратами и оборудованием, рассчитанным на трехфазное питание, советуем купить трехфазный генератор мощностью от 15 кВт и выше.­

    Покупая мощный генератор, следует иметь в виду, что эксплуатация такого оборудования обойдется дорого: кроме расходов на топливо придется тратиться на расходные материалы: машинное масло и фильтры.

    Уровень шума

    Это немаловажный параметр, особенно если агрегат будет эксплуатироваться непрерывно. Бензиновые генераторы издают меньше шума, чем дизельные. Для уменьшения шума бензиновых агрегатов советуем опционально заказывать «еврокожух», уменьшающий шумность. Для дизельных агрегатов также есть подобная опция – «контейнер».

    Включение­

    • Стартером оснащаются аппараты эконом-класса. Запуск осуществляется при помощи резкого рывка стартерного тросика.
    • Ключом или кнопкой – это удобнее, так как включить устройство сможет и ребенок.
    • Автоматическое включение. Подключение генератора происходит автоматически, сразу после того, как напряжение в сети исчезнет.­

    Производитель

    Изделия известных европейских и азиатских производителей отличаются высоким качеством и высокой стоимостью. Так, повышенная цена электрогенераторов производителей Briggs & Stratton или Honda вызвана тем, что ресурс моточасов (срок непрерывной работы) двигателя агрегата составляет 5 тысяч часов. Изделия компании Hyundai стоят существенно меньше, но и их моторесурс также ниже, и составляет не больше 3 тысяч часов.­

    Отдельно стоит упомянуть о продукции малоизвестных китайских марок. Изделия китайских брендов привлекают покупателей своей низкой ценой. В большинстве случаев такие электрогенераторы неплохо работают положенный срок, но иногда ломаются уже через несколько дней после покупки. Если вы решите покупать такое устройство, советуем вам внимательно изучить инструкцию и пользоваться электрогенератором аккуратнее.

    Этот тип автономного источника электричества распространен больше других. Топливом для двигателей этих девайсов служит бензин марки Аи92. В силу своей конструкции этот вариант лучше всего подходит для кратковременного использования на даче, на стройке, и т.д.

    Достоинства:­

    • Небольшая цена
    • Надежность, компактность, простота конструкции
    • Низкий уровень шума (по сравнению с генератором, комплектующимся дизельным ДВС)
    • Относительная дешевизна топлива
    • Заводятся даже при сильном морозе

    Недостатки:

    • Воздушное охлаждение – время непрерывной работы не превышает сутки
    • Небольшой моторесурс
    • Невысокая мощность

    Достоинства:

    • Возможность длительной непрерывной эксплуатации
    • Высокая мощность
    • Высокая экономичность (по сравнению с бензиновым электрогенератором)
    • Дешевизна топлива

    Недостатки:

    • Цена в 2 раза больше, чем у бензиновых агрегатов
    • Повышенная шумность
    • Большие габариты

    Газовые электрогенераторы обладают теми же достоинствами, что и дизельные. Отличительная особенность этой конструкции – в качестве топлива используется природный газ. Это в несколько раз снижает расход на топливо. Если к даче проведен природный газ, газовый электрогенератор будет в этом случае идеальным вариантом.

    Действие устройств этого типа основано на преобразовании вырабатываемого тока из переменного в постоянный и обратно, благодаря чему вырабатывается ток с идеальными параметрами: частотой и напряжением. Ток с близкими к идеальным параметрами благоприятно сказывается на работе электроники, компьютеров и т.п. В качестве топлива некоторые модели инверторных электрогенераторов используют бензин, другие – дизельное топливо.

    Для уменьшения расхода топлива во многих моделях инверторных устройств применяется система регулировки оборотов. Если одно или несколько подключенных к генератору устройств будут отключены, система автоматически уменьшит обороты, и генератор будет вырабатывать достаточное количество электроэнергии. Это помогает сэкономить значительное количество топлива.

    Достоинства:

    • Высокие характеристики вырабатываемого тока
    • Пониженный расход топлива (на треть меньше аналогов)
    • Небольшие размеры (в 2 раза меньше аналогов) и вес

    Недостаток:

    • Высокая стоимость

    Если вам необходимо купить агрегат средней или высокой мощности, вам стоит подумать о его монтаже – самостоятельная установка представляется проблематичной. Потребуется не только сделать подводку кабелей, но и установить автоматику, обеспечить вентиляцию или водяное охлаждение, фундамент, и т.д. Эти работы покупатель производит за свой счет, их стоимость составляет от 10 до 30% от цены электрогенератора.

    Для снижения шумности, а также для улучшения условий работы в неблагоприятных условиях открытого воздуха рекомендуем устанавливать прибор в еврокожух (контейнер). Этим понижается шумность агрегата и увеличивается его срок службы.

    Покупая генератор, ориентируйтесь на те фирмы, сервисные центры которых есть поблизости к вашему месту проживания. Если сервисный центр будет находиться далеко, гарантийный ремонт будет неосуществим.

    Для того чтобы вычислить мощность прибора, подсчитайте мощность ламп освещения и бытовых приборов, которые вы планируете подключать к электрогенератору. При подсчете мощности учитывайте т.н. пусковые токи: во время включения любой электроприбор потребляет в несколько раз больше электроэнергии, чем указано в инструкции.

    О важных моментах выбора электрогенератора для дачи смотрите в видео.

    Если у вас есть собственный опыт покупки подобной аппаратуры, поделитесь им в комментариях внизу страницы.

    Foto: Eero Vabamägi

    Бытует мнение, что газ дешевле электричества. И выгоднее купить газовую плиту, нежели стеклокерамическую. А уж старые добрые советские, с конфорками, вообще лучше всех. ”МК-Эстония” решила посчитать, какая плита будет самой экономичной, и выяснить, чем вообще отличаются дорогие плиты от бюджетных.

    На самом деле ныне в магазинах плит столько, что рассказать о каждой не представляется возможным. Разброс цен - от 20 евро за плиточку с одной конфоркой до нескольких тысяч за кулинарный агрегат высокохудожественной ценности.

    И все же, если отбросить художественные и дизайнерские ценности и рассуждать только с позиций функционализма, то можно выделить шесть типов плит: газовая, четыре типа электрических и плита смешанного типа. При этом мы сейчас не будем заострять внимание на духовках, поскольку это отдельная, большая и сложная тема. Будем изучать только варочные поверхности.

    Чугунные ”блины”

    Самая неэкономичная из всех возможных электрических - это старая электроплита с чугунными блинами конфорок. Она же самая недорогая - 18 евро за одну конфорку, за 206 евро можно купить уже полноценную плиту. Однако мы советуем трижды подумать, приобретать ли такую даже для дачи. Она весьма неэкономична.

    Масса энергии уходит для того, чтобы разогреть чугунные ”чурки”, и когда блюдо уже приготовлено, они все еще остывают. Из-за этого у многих хозяек, не привыкших к электроплитам, продукты подгорают.

    Секрет готовки на таких плитах довольно прост, конфорки нужно выключать до того, как блюдо полностью приготовлено, или как только оно приготовлено, снимать его с плиты. Очень удобно на электроплитах ”томить” блюда, достаточно выключить конфорку заранее, и блюдо само доходит до готовности.

    Вкус у еды, приготовленной на таких чушках, совсем другой, чем у еды, приготовленной на газе. Более нежный. На такой плите, как и на других электроплитах, нельзя ставить котелки, казаны, а также кастрюли с выгнутым дном. На газовых плитах такие кастрюли закипают быстрее, а вот на электроплитах такие кастрюли портят дорогостоящие нагревательные элементы.

    Иногда конфорки-”блины” перегреваются и деформируются (выгибаются) - и тогда готовить практически невозможно - потому что кастрюля, к примеру, не стоит ровно, и соприкасается с конфоркой не полностью. Надо просто вызвать мастера и поменять конфорку. Случается это, когда электроплитой пытаются топить помещение или ставят посуду с неровным дном.

    Стеклокерамические плиты с нагревательными элементами

    Первое, что необходимо отметить, - это то облегчение, которое испытывают хозяйки, когда к ним на кухню попадает стеклокерамическая плита. Одним движением руки плита очищается от любой накипи и грязи. Поверхность ровная, очень гладкая и к ней ничего не прилипает. Чистить такую - одно удовольствие.

    Хотя с первого взгляда все стеклокерамические поверхности одинаковые, они довольно серьезно отличаются и по конструкции, и по цене, и по экономичности. Обойтись такая плита может и в 279 евро, и в 700.

    Отличие стеклокерамической плиты с нагревательными элементами - это удивительная способность стеклокерамики к нагреванию. Поперек слоя стеклокерамического листа (сквозь него) тепло очень хорошо проходит, а вот вдоль листа - плохо. Благодаря этому тепловое излучение раскаленной докрасна спирали нагревательного элемента прекрасно достигает дна посуды и лишь в незначительной степени распространяется за пределы зоны нагрева. Вы можете совершенно безболезненно касаться стекла вне конфорок и ощутите лишь тепло, без риска обжечься.

    А чтобы не получить ожога, случайно прикоснувшись к недавно выключенной зоне нагрева, стеклокерамические варочные поверхности снабжены специальными индикаторами остаточного тепла. Они напоминают вам своим свечением о необходимости быть осторожными, пока температура зоны нагрева превышает 50°С.

    По сравнению с ”блинами” такие плиты тратят гораздо меньше энергии, но разнятся они и между собой. Нагревательные элементы бывают спиральными, ленточными и галогенными.

    Галогенные нагревательные элементы быстрее нагреваются, но и тратят немного больше энергии.

    ТОП

    Спиральные и ленточные энергии тратят меньше, хотя и немного медленнее нагреваются.
    Чтобы разогреть литр воды, плита с ленточным нагревателем потратила на 1 минуту и 18 секунд больше времени, но при этом сэкономила 0,04 кВт/час. Если посмотреть годовую экономию, то разница между потреблением плит 8,4 евро. Хотя и выигрыш во времени - около 6 часов готовки! Тут уж кому что важнее. А ценовая категория у этих плит примерно одинаковая.

    Индукционные плиты

    Внешне эти плиты мало чем отличаются от стеклокерамических. Та же стерильность на кухне, те же круги на плоской поверхности, обозначающие конфорки. Но, во-первых, эти плиты на порядок безопаснее - они просто перестают работать, когда вы снимаете с нее кастрюлю или сковородку. А во-вторых, они гораздо экономичнее.

    По сути индукционные плиты - абсолютный рекордсмен экономичности. Даже по сравнению с газовой плитой пока что индукционная плита экономнее газовой.

    Принцип их действия несколько фантастичен - под стеклом этих плит находятся катушки индуктивности. Текущий по катушке переменный электрический ток по закону индукции должен навестись в находящемся поблизости проводнике - им является дно поставленной на конфорку посуды. Вот так, без лишних потерь энергии - сразу в кастрюле или сковородке, а уж она при этом разогреется быстрее, чем на газу или электрической конфорке. Индукция– абсолютный рекордсмен по КПД (до 90%), экономичности и скорости нагрева.

    Проще говоря, в индукционных плитах поверхность не нагревается вообще. С этим связано несколько довольно забавных демонстрационных фокусов. В одном из них на конфорку кладут половину сковороды и разбивают посередине яйцо, так чтоб половина была на сковороде, а половина на поверхности без сковороды. На сковороде яйцо поджаривается, на второй половине остается сырым. Этот фокус наглядно показывает, что индукционная плита воздействует только на металл кастрюль и сковород. И нагревает только кастрюли и сковороды, а сама поверхность если и нагревается, то только от тепла сковороды или кастрюли.

    Другой известный фокус, когда на плиту между конфоркой и кастрюлей кладут денежную купюру. Вода кипит, купюра цела. (Евро для фокусов использовать нельзя, в них есть металл, а доллары - пожалуйста.) Поверхность получает тепло от дна кастрюли и не разогревается более 60 градусов.

    По цене индукционные плиты имеют очень большой разброс - 39 евро за одну конфорку, порядка 499 евро за полноценную плиту. На разницу цен влияет и экономичность, и объединенные конфорки, когда для большой кастрюли можно использовать сразу несколько конфорок, и плита, сама распознающая размер кастрюли, и многое другое. Регуляторы температуры, как правило, сенсорные. Чем больше градаций, тем экономнее плита.

    Газовая плита

    До сих пор у многих жителей Эстонии - именно газовые плиты. Люди к ним привыкли и уже не замечают их недостатков, будучи свято убеждены в их экономичности. Цены на них тоже вполне демократичны - 11 евро за одну конфорку, порядка 219 евро за полноценную плиту.

    Недостатков по сути всего два - низкий КПД и взрывоопасность. Любая перестановка плиты на кухне чревата утечкой газа. Утечка газа может привести к взрыву. Зато долгое время наши газовые плиты были крайне выгодны исходя из цены на газ. Но сегодня цены на газ таковы, что кухонные газовые плиты уже не самые выгодные.

    Выгода складывается из разницы тарифов на газ и электричество. На сегодняшний день газовые плиты (там, где есть магистрали природного газа) менее экономны, чем электрические индукционные, новые стеклокерамические плиты с галогенными (HI LIHT) или ленточными нагревателями. И даже не выгоднее, чем старые электрические плиты.

    Есть еще вариант - газ в баллонах, как правило, это пропан-бутан. Теплоемкость у пропан-бутана больше, но все равно цены на него таковы, что люди придумывают разные хитрости при готовке. Например, чтобы сварить картошку или макароны, используют кипяток из электрочайника. Про духовку стараются не вспоминать и т.д.

    Вдобавок примерно каждый месяц нужно покупать баллон и устанавливать его.

    В погоне за экономией

    Если вы, изучив цифры, решите заменить свою газовую плиту с подключением к магистрали природного газа на более экономную индукционную, помните: окупится маленькая индукционная плита в одну конфорку (за 39 евро) примерно за полтора года.

    Но на даче это может происходить медленнее (даже если разница тарифов на газ и электричество сохранится). Ведь сколько тратится газа на даче? Хорошо, если один баллон или 6-8 м 3 за сезон. А то и за два-три сезона, если приезжать только на выходные и не особенно заморачиваться с готовкой.

    Статья целиком - в еженедельнике ”МК-Эстония”.

    Понравилось? Лайкни нас на Facebook