Как работает дифференциал в автомобиле. Полная блокировка дифференциала. Самые распространенные типы самоблоков

КАК РАБОТАЮТ ДИФФЕРЕНЦИАЛЫ

В этой статье мы расскажем о работе дифференциалов, а также зачем он необходим автомобилю и о его недостатках.

Что такое дифференциал?

Дифференциал – это устройство, которое распределяет крутящий момент по двум направлениям, допуская вращение каждого выхода с разной скоростью. Он используется во всех современных автомобилях и грузовиках, а также на машинах с постоянным полным приводом. Причем в последних - между каждой парой колес, потому что передние проходят разный путь в повороте по сравнению с задними. Системы непостоянного полного привода не имеют дифференциала между передними и задними колесами; вместо этого во время механической блокировки передние и задние колеса вынуждены вращаться с одинаковой средней скоростью. Вот почему такие системы полного привода не рекомендуют использовать на сухом асфальте: с включенным полным приводом машина тяжело поворачивается на асфальте.

Дифференциал выполняет сразу 3 функции:

Направляет мощность двигателя на колеса;

Является последним этапом понижения передачи в машине, замедляя частоту вращения трансмиссии перед тем, как мощность пойдет на колеса;

Направляя мощность на колеса, позволяет им вращаться с разными скоростями (это свойство дало имя дифференциалу).

Зачем нужен дифференциал

Колеса машины вращаются с разными скоростями, особенно в поворотах - внутренние колеса проходят меньший путь, чем наружные, а значит, и с меньшей скоростью. При этом передние колеса проходят разное расстояние по сравнению с задними. Если бы машина не имела дифференциалов, то колеса вращались бы с одной и той же скоростью. Это сильно затруднило бы повороты: чтобы поворачивать, одно колесо должно было бы проскальзывать, т.е. буксовать. Усилие от одного колеса через ось переходило бы, серьезно нагружая ее компоненты.


Открытые дифференциалы

Начнем с простейшего варианта, называемого открытым дифференциалом. Когда машина едет по прямой, оба ведущих колеса вращаются с одинаковой скоростью. Первичная шестерня вращает коронную шестерню и корпус дифференциала, при этом ни одна из шестерен в корпусе не вращается – обе полуосевые шестерни заблокированы, так как движение идет по прямой. Обратите внимание, что пара “первичная шестерня и коронная шестерня” - это последнее передаточное число в машине, которое часто называют передаточным числом моста или передаточным числом главной передачи. Если оно составляет 4,10, тогда число зубьев коронной шестерни в 4,10 раза больше числа зубьев первичной шестерни. При повороте подключаются полуосевая и ведущая шестерни, обеспечивая разные скорости для колес.

Дифференциал в разрезе. Классические автомобильные дифференциалы основаны на планетарной передаче. Карданный вал (1 ) через коническую зубчатую передачу вращает ротор (2 ). Ротор через шестерни (3 ) вращает полуоси (4 ). Такое зацепление имеет не одну, а две степени свободы, и каждая из полуосей вращается с такой скоростью, с какой может. Постоянна лишь суммарная скорость вращения полуосей

Бездорожье

Это еще одна ситуация, когда простой дифференциал может привести к проблеме. Допустим, у вас полно¬приводный внедорожник или «паркетник» с открытым дифференциалом на передней и задней оси. Как мы упоминали ранее, открытые дифференциалы подают всегда одинаковый крутящий момент на оба колеса. Если одно из передних и одно из задних колес повиснут в воздухе одновременно, то они будут беспомощно крутиться в воздухе, а автомобиль вообще не сможет двигаться вперед. Решение этой проблемы – дифференциалы повышенного трения (limited slip differential (LSD)). Они используют различные механизмы, чтобы работать, как обычные дифференциалы при поворотах. При скольжении одного колеса дифференциалы повышенного трения позволяют подавать больше крутящего момента на колесо с тягой.

Дифференциалы с постоянным моментом блокировки

Этот вид дифференциалов повышенного трения использует все элементы открытого дифференциала, добавляя пружины и набор сцепления. В некоторых используется конусообразное сцепление, подобно синхронизаторам механической КПП. Пружины толкают полуосевые шестерни, которые закреплены на корпусе дифференциала, на сцепление. Сцепление срабатывает при возникновении разницы в скоростях вращения колес оси, например в повороте. Сцепление сопротивляется разнице в скорости вращения колес. Если одно колесо пытается вращаться быстрее другого, ему сначала надо преодолеть сцепление. Жесткость пружин и трение сцепления определяют значение крутящего момента на преодоление сопротивления. Вернемся к ситуации, когда одно колесо имеет сцепление с дорогой, а второе находится на льду. Дифференциалы с постоянным моментом блокировки даже при нахождении одного колеса на льду без тяги позволяют передать крутящий момент на другое колесо. Крутящий момент, идущий на колесо не на льду, равен максимальному усилию на преодоление сопротивления сцепления внутри дифференциала. В результате автомобиль продолжает движение с ограниченной мощностью.

Вискостная муфта

Вискостная муфта часто применяется в полноприводных автомобилях для соединения передней оси с задней. Когда передняя ось начинает буксовать, крутящий момент идет на заднюю. Вискостная муфта представляет собой набор дисков внутри закрытого корпуса, заполненного тягучей жидкостью. Каждый набор дисков соединен с выходной полуосью. В нормальных условиях оба набора дисков и жидкость вискомуфты вращаются с одинаковой скоростью. Когда один из мостов пытается вращаться быстрее, например при пробуксовке, соответствующий ему набор дисков начинает вращаться быстрее, чем другой. Вискостная жидкость, которая находится между дисками, пытается догнать ускорившиеся диски, увлекая за собой медленные диски, передавая больший крутящий момент на медленные колеса, то есть на те, которые не буксуют. Чем больше разница в скорости вращения между дисками, тем больший крутящий момент передает вискостная муфта. Она не вмешивается в повороты, потому что получаемый крутящий момент очень мал. Кстати, в этом состоит ее основной недостаток: крутящий момент не передается, пока колесо не начнет буксовать.

Блокирующийся дифференциал и Торсен (Torsen®)

Блокировка дифференциала используется для внедорожников. Она добавляет к свободному дифференциалу электрический, пневматический и гидравлический механизм, чтобы жестко соединить шестерни между собой. Этот механизм включается водителем вручную, и во включенном режиме оба колеса вращаются с одинаковой скоростью. Если одно из колес окажется в воздухе или на льду, это никак не влияет на второе. Оба колеса продолжают вращаться с одинаковой скоростью, как будто ничего не случилось. Дифференциал Torsen (означет – чувствующий момент – Torque Sensing) – это чисто механическое устройство; в нем нет электроники, сцеплений и вискостных жидкостей. Дифференциал Torsen – это несколько червячных передач, вращающихся внутри герметичного цилиндрического корпуса. От углов наклона червяков и применяемых материалов зависит коэффициент блокировки. Он определяет, когда и какой дополнительный момент должен перейти на ось, имеющую лучшее сцепление с дорогой. Но как только одно из колес теряет тягу, разница в крутящем моменте колес вынуждает зацепляться шестерни Torsen. Форма шестерен в этом дифференциале определяет коэффициент передачи крутящего момента. Например, если конкретный дифференциал Torsen сконструирован с передаточным числом 5:1, то он способен увеличивать вплоть до 5 раз крутящий момент на колесо с хорошей тягой. Дифференциал Torsen часто находит применение в спортивных полноприводных машинах. Подобно вискомуфте, он используется для передачи крутящего момента между передней и задней осью. В этом случае дифференциал предпочтительнее вискомуфты, потому что передает крутящий момент на колеса до того момента, как начинается пробуксовка. Определяющей характеристикой Torsen стало передаточное соотношение крутящего момента TBR (Torque Bias Ratio). Типичные значения – от 2 до 6.

Дифференциалы и тяга

Открытый дифференциал всегда подает одинаковый крутящий момент на каждое колесо. Существуют два фактора, от которых зависит количество крутящего момента на колеса: мощность и тяга. На сухой дороге, когда тяга в избытке, количество крутящего момента ограничено возможностями двигателя до колес; в условиях слабой тяги, например при езде по льду, количество максимального крутящего момента равно тому значению, при котором колесо начинает проскальзывать в данных условиях. Итак, даже если машина может произвести больше крутящего момента, необходима тяга, чтобы передать его к дороге. Если дать больше газа в момент пробуксовки, колеса просто начнут больше проскальзывать.

На льду

Рассмотрим, что происходит, если одно колесо буксует, а другое имеет хорошее сцепление со льдом. Вот тут проявляется слабость открытых дифференциалов. Дело в том, что открытые дифференциалы подают всегда одинаковый крутящий момент на оба колеса, а его максимальное значение – это момент начала пробуксовки. На льду не надо иметь большой крутящий момент, чтобы заставить колеса пробуксовывать. Когда колесо с хорошей тягой получает лишь тот ограниченный крутящий момент, который может быть направлен на колесо с меньшим сцеплением, машина не может быстро ехать.

Здравствуйте друзья читатели! Поговорим о механизме, который есть и будет на каждом автомобиле – дифференциал. Что такое дифференциал в автомобиле и зачем нужен? Дифференциал нужен для оптимального распределения крутящего момента при поворотах и маневрировании, когда колеса начинают крутиться с разными угловыми скоростями.

Дифференциал, как я думаю о нем, должен писаться с большой буквы. Он являет собой самый первый сложный шестеренчатый механизм, изобретенный на заре автомобилестроения. Поняв его и испытав восторг от человеческого гения, который смог так просто решить важную проблему, ты убедишься что сути-то он прост как пять копеек, а какую задачу решил!

О нем особо никто теперь не думает, он есть — да и есть, и должен быть всегда. Привыкли. А ведь без него нет ни одного автомобиля. Это важнейший элемент трансмиссии!

Где расположен дифференциал:

  • на заднеприводном автомобиле в картере моста, и совмещен с шестерней главной передачи;
  • на переднеприводном, тоже совмещен с главной передачей и как правило в одном картере с ;
  • на они присутствуют и в переди, и сзади, и совмещены с главными передачами;
  • так же, в полноприводных автомобилях внедорожниках и , для оптимального распределение крутящего момента на все колеса, добавляется третий дифференциал и устанавливается между осями в раздаточной коробке.

Те дифференциалы, которые работают на ведущих колесах называют межколесными, а дифференциалы, распределяющие моменты между осями автомобиля – межосевыми.

Принцип работы дифференциала построен на идее планетарного редуктора. В зависимости от использования вида шестерен, дифференциалы бывают следующих видов: цилиндрические, конические, червячные.

Дифференциал конический, как правило применяют в межколесных дифференциалах. Цилиндрический распространен, ввиду его конструктивной простоте, в межосевых дифференциалах. Червячный признан как универсальный и самый тихий в работе, хотя самый сложный в изготовлении, применяется и в межколесных и в межосевых.

Устройство дифференциала автомобиля

Рассмотрим устройство дифференциала автомобиля. Все дифференциалы имеют один и тот же принцип – принцип планетарного редуктора. То есть имеют полуосевые шестерни и бегущие по ним, шестерни – сателлиты.

Корпус (чашка дифференциала) принимает крутящий момент от шестерни главной передачи, чарез оси сателлитов и сами шестерни-сателлиты и передает на полуосевые шестерни.

Сателлитов может быть два или четыре в коническом дифференциале, это зависит от мощности автомобиля.

В конических и червячных дифференциалах из ровно в два раза больше, это связано с конструктивной особенности такого типа дифференциалов. Пары сателитов распределяется каждый на свою полуосевую шестерню.

Полуосевые шестерни, в планетарке их еще называют светлым название «солнечные шестерни», передают уже крутящий момент на колеса. Левые и правые полуосевые шестерни могут иметь разное количество зубьев, такие дифференциалы называют несимметричные. Нессиметричные дифференциалы, соответственно, имеют и пары сателлитов с разным количеством зубов (рассмотрите внимательно конический дифференциал на чертеже выше).

Несмотря на ассиметричность, дифференциалы работают так же как и симметричные, и та или иная идея конструкторов по компоновке этих механизмов обусловлена лишь соображениями компактности и конструктивной необходимости.

Работа дифференциала

Работа межколесного дифференциала характеризуюется тремя режимами:

  1. движение по прямой;
  2. работа в поворотах;
  3. в условиях скользкой дороги.

При движении прямо, силы распределяются поровну на каждое колесо, крутящий момент через корпус передается на сателлиты. Сателлиты не вращаются на своих осях, соответственно полуоси вращаются с равными угловыми скоростями.

В повороте же начинает работать дифференциал, то есть выполнять работу, для которой он и был создан. Внутренне колесо начинает бежать по меньшему радиусу, а внешнее по большому, угловые скорости на полуосевых шестернях начинают меняться. Сателлиты начинают вращаться вокруг своих осей, которые увеличивают скорость внешней шестерни полуоси, бегущего по внешнему радиусу колеса и уменьшать угловую скорость внутренней шестерни, полуось и колесо, бегущего по внутреннему радиусу.

Суммы частот вращения полуосевых шестерен всегда соответствуют частоте вращения ведомой шестерни главной передачи. Поэтому при повороте тяга на колеса всегда одинаковая и никогда не происходит пробуксовки внутреннего колеса, при условии равного сцепления колес с дорогой.

Если же автомобиль попадает в условия скользкой дороги, то колесо у которого меньшее сцепление начинает пробуксовавать, вращаться быстрее, а то колесо у которого сцепление с дорогой больше, просто перестает вращаться и по сути дела автомобиль просто будет стоять на месте с одним вращающемся колесом. Это тот минус дифференциала, который обусловлен его конструкцией.

Бороться с таким явление можно, и конструкторы придумали блокировку дифференциала. Но об этом в другой статье.

Спасибо за внимание! Переходите в другую статью, там наверняка вы найдете много для себя полезного. И поделитесь с друзьями в соц.сетях.

Дифференциал – это механизм трансмиссии, распределяющий подводимый к нему крутящий момент между приводными валами и позволяющий колесам вращаться с разными угловыми скоростями. Особенно это заметно, когда машина проходит поворот. Дифференциал обеспечивает безопасное и комфортное вождение на сухой дороге с твердым покрытием. Однако если автомобиль покинет ее пределы и продолжит двигаться по пересеченной местности, а также в случае гололеда (и других тяжелых погодных условий) этот механизм может лишить автомобиль возможности передвигаться. О том, что такое дифференциал, как он устроен, в чем его вред для внедорожников и как с этим бороться — пойдет речь ниже.

Дифференциал как часть трансмиссии

Дифференциал в автомобиле - это механизм, распределяющий крутящий момент карданного вала трансмиссии между ведущими колесами передней или задней оси (в зависимости от типа привода), позволяя каждому из них вращаться без пробуксовки. В этом заключается основное назначение дифференциала.

Ведуший мост с дифференциалом в разрезе

При прямолинейном движении, когда колеса нагружены одинаково и имеют равную угловую скорость вращения — механизм работает в качестве передаточного звена. Если условия движения изменяются (поворот, пробуксовка) — нагрузка становится неравномерной. У полуосей появляется необходимость вращаться с разными скоростями, и, как следствие, становится необходимым распределить полученный крутящий момент между ними в определенном соотношении. Тогда узел выполняет вторую важную функцию: обеспечение безопасного маневрирования автомобиля.

Схема расположения дифференциала зависит от типа привода автомобиля:

  1. Передний привод – картер коробки передач.
  2. Задний привод – корпус ведущего моста.
  3. Полный привод – корпусы переднего и заднего мостов (для передачи крутящего момента ведущим колесам) или раздаточная коробка (для передачи крутящего момента ведущим мостам).

Дифференциал на автомобилях появился не сразу. Конструкторы первых «самодвижущихся экипажей» были очень озадачены плохой маневренностью своих изобретений. Вращение колёс с одинаковой угловой скоростью во время прохождения поворота приводило к тому, что одно из них начинало буксовать или, наоборот, полностью теряло контакт с дорогой. Инженеры вспомнили, что на ранних прототипах первых автомобилей, снабжаемых паровыми двигателями, было устройство, позволявшее избежать потери управляемости.

Механизм распределения вращающего момента изобрёл француз Онесифор Пеккёр. В устройстве Пеккёра присутствовали валы и шестерни. Через них крутящий момент от мотора поступал к ведущим колёсам. Но даже после применения изобретения Пёккера проблема пробуксовки колёс на поворотах не решилась полностью. Выявились недостатки системы. Например, одно из колес в какой-то момент терял сцепление с дорогой. Сильнее всего это проявлялось на обледенелых участках.

Пробуксовка в таких условиях часто приводила к авариям, поэтому конструкторы надолго задумались над тем, как предотвратить занос машины. Решение было найдено Фердинандом Порше. Он стал изобретателем кулачкового механизма, который ограничивал проскальзывание колёс ведущего моста. Немецкое устройство дифференциала нашло применение в автомобилях Volkswagen.

Как устроен дифференциал


Принципиальная схема дифференциала

Узел работает как планетарный редуктор. Принципиальное устройство дифференциала: шестерни полуосей (5) и сателлитов (4) размещены в чашке (3). Чашка (корпус) жестко соединена с ведомой шестерней (2), которая принимает крутящий момент от ведущей шестерни главной передачи (1). Корпус передает вращение посредством сателлитов полуосям, вращающим ведущие колеса. Разные угловые скорости обеспечиваются благодаря работе сателлитов. Величина крутящего момента остается неизменной.

Применение дифференциалов в зависимости от их видов

Устройства используют для передачи крутящего момента ведущим колесам и ведущим мостам автомобиля.

Грузовики и легковые автомобили всех типов приводов имеют межколесный дифференциал, передающий вращение колесам. Межосевой дифференциал, распределяющий крутящий момент между мостами, применяют исключительно в полноприводных машинах.

По типу применяемой зубчатой передачи различают следующие виды механизмов:

  1. конический;
  2. цилиндрический;
  3. червячный.

По количеству зубьев шестерен полуосей:

  1. симметричный;
  2. несимметричный.

Благодаря его свойству пропорционально распределять крутящий момент несимметричный дифференциал с цилиндрической передачей устанавливают между мостами полноприводных автомобилей.

Заднеприводные и переднеприводные автомобили оснащают коническим симметричным дифференциалом.

Червячная передача, являясь самой универсальной, используется во всех типах устройств со всеми приводами.

Схема работы дифференциала

Рассмотрим принцип, по которому работает симметричный межколесный конический дифференциал, распределяющий крутящий момент между колесами в трех различных условиях:

  1. прямолинейное движение;
  2. поворот;
  3. пробуксовка.

При прямолинейном движении

Прямолинейное движение характеризуется равномерным распределением нагрузки между колесами автомобиля. Они имеют одинаковую угловую скорость. Сателлиты, размещенные в корпусе, не вращаются вокруг своих осей. Они передают крутящий момент от ведомой шестерни главной передачи к полуосям через неподвижное зубчатое зацепление.


Работа дифференциала при повороте и прямолинейном движении

При повороте

Когда транспортное средство поворачивает, силы сопротивления и нагрузки распределяются следующим образом:

  • Внутреннее колесо, имеющее меньший радиус от центра поворота, испытывает сопротивление большей силы, чем наружное. Увеличенная нагрузка заставляет его снизить скорость вращения.
  • Наружное колесо, двигаясь по большему радиусу (большей траектории), наоборот, должно увеличить угловую скорость, чтобы автомобиль мог повернуть плавно, без пробуксовки.

Таким образом, колеса должны иметь разные угловые скорости. Замедление вращения полуоси внутреннего колеса приводит сателлиты в движение. Они, в свою очередь, посредством конической зубчатой передачи увеличивают скорость вращения полуоси наружного колеса. Крутящий момент, получаемый от главной передачи, остается неизменным.

При пробуксовке

Колеса автомобиля, движущегося даже прямолинейно по скользкой дороге или бездорожью, могут испытывать различную нагрузку: одно из них пробуксовывает, теряя сцепление с дорогой; другое, становясь более нагруженным, замедляется. Повторяется схема поворота. Только теперь она приносит вред: буксующее колесо может получить 100% принятого дифференциалом крутящего момента, а нагруженное вообще перестанет вращаться. Движение автомобиля прекратится.

Эти недостатки работы узла решаются различными способами:

Блокировка дифференциала и система курсовой устойчивости


Принудительная блокировка дифференциала с гидравлическим приводом

Чтобы крутящий момент полуосей снова стал одинаковым, нужно блокировать действие сателлитов или обеспечить его передачу от чашки на нагруженную полуось.

Это особенно актуально для машин повышенной проходимости, имеющих полный привод 4Х4. Не только потому что они предназначены для езды по местности с тяжелыми дорожными условиями. Стоит машине, оснащенной тремя дифференциалами (два межколесных, один межосевой), хотя бы в одной из четырех точек потерять сцепление – величина крутящего момента остальных колес устремится к нулевому значению, и машина откажется ехать.

Избежать неприятностей помогает блокировка, которая может быть либо частичной, либо полной (зависит от степени перераспределения усилий между полуосями), а также либо ручной, либо автоматической (зависит от степени контроля со стороны водителя).

Наиболее сложным совершенным способом устранить недостатки узла является электронная блокировка, реализуемая на базе системы курсовой устойчивости, датчики которой контролирует все необходимые параметры во время движения автомобиля. На основе полученных данных работа автомобиля корректируется автоматически.

Безопасность прежде всего

Дифференциал создан для обеспечения безопасного комфортного маневрирования на трассе. Описанные выше недостатки касаются езды в экстремальных условиях, а также по пересеченной местности. Поэтому если на автомобиле установлен привод ручной блокировки, использовать его нужно исключительно в соответствующих дорожных условиях. А шоссейные автомобили, которые сложно «уговорить» ехать медленнее 100 км/час, эксплуатировать без дифференциала вообще невозможно и даже опасно. Такой вот нехитрый, но бесконечно важный механизм в трансмиссии.

Служит для распределения подводимого к нему вращающего момента между выходными валами и обеспечивает возможность их вращения с неодинаковыми угловыми скоростями.

При движении колесного ТС на повороте внутреннее колесо каждой оси проходит меньшее расстояние, чем ее наружное колесо, а колеса одной оси проходят разные пути по сравнению с колесами других осей.

Неодинаковые пути проходят колеса ТС при движении по неровностям на прямолинейных участках и на повороте, а также в случае прямолинейного движения по ровной дороге при разных радиусах качения колес, например при неодинаковом давлении воздуха в шинах и износе шин или неравномерном распределении груза на ТС.

Если бы все колеса вращались с одинаковой скоростью, это неизбежно приводило бы к их проскальзыванию и пробуксовыванию относительно опорной поверхности, следствием чего явились бы повышенный износ шин, увеличение нагрузок в механизмах трансмиссии, затраты мощности двигателя на работу скольжения и буксования, повышение расхода топлива, а также трудность поворота транспортной машины. Таким образом, колеса ТС должны иметь возможность вращаться с неодинаковыми угловыми скоростями относительно друг друга. У неведущих колес это обеспечивается тем, что они установлены свободно на своих осях и каждое из них вращается независимо друг от друга. У ведущих колес это обеспечивается установкой в их приводе дифференциалов.

Основные типы дифференциалов

По месту расположения дифференциалы подразделяют на:

  • межколесные (распределяющие вращающий момент между ведущими колесами одной оси)
  • межосевые (распределяющие момент между главными передачами двух ведущих мостов)
  • центральные (распределяющие момент между группой ведущих мостов)

По соотношению вращающих моментов на ведомых валах дифференциалы могут быть:

  • симметричными (моменты на ведомых валах всегда равны между собой)
  • несимметричные (отношение моментов на ведомых валах не равно единице)

Различают также дифференциалы:

  • неблокируемые
  • блокируемые принудительно
  • самоблокирующиеся

По конструкции дифференциалы подразделяют на:

  • конические
  • цилиндрические
  • кулачковые
  • червячные

В некоторых случаях вместо дифференциалов устанавливают механизмы типа муфт свободного хода.

В настоящее время на колесных ТС наиболее широкое распространение получили конические симметричные неблокируемые дифференциалы.

Видео: Как работает дифференциал?

Схемы дифференциалов

Рис. Схемы простых дифференциалов с постоянным соотношением моментов на ведомых валах: а — симметричного конического; б — симметричного цилиндрического; в — несимметричного цилиндрического; г — несимметричного конического; 1, 8 — левая и правая полуоси дифференциала; 2, 6 — левая и правая полуосевые шестерни; 3 — сателлит; 4 — корпус дифференциала; 5 — ведомое колесо главной передачи; 7 — ось вращения сателлитов; 9 — солнечная шестерня; 10 — эпициклическая шестерня

Рис. Межколесный симметричный конический дифференциал: 1, 8 — чашки дифференциала; 2, 7 — опорные шайбы полу осевых зубчатых колес; 3, 6 — полу осевые зубчатые колеса; 4 — опорная шайба сателлита; 5 — сателлиты; 9 — крестовина

Рис. Схемы несимметричных дифференциалов: а - конический; б - цилиндрический

Рис. Кулачковый дифференциал автомобиля ГАЗ-66-11 (а) и схема его работы (б): 1 - внутренняя звездочка; 2 - сепаратор; 3 - наружная звездочка; 4 - чашка дифференциала; 5 - сухарь

Рис. Блокируемый межколесный дифференциал: 1 - муфта; 2 - зубчатый венец

Рис. Межосевой дифференциал автомобиля КамАЗ-5320: 1 - ведущий вал; 2 - уплотнительная манжета; 3 - картер дифференциала; 4, 7 - опорные шайбы; 5, 17 - чашки дифференциала; 6 - сателлит: 8 - датчик блокировки; 9 - пробка заливного отверстия; 10 - пневматическая камера блокировки; 11 - вилка; 12 - стопорное кольцо; 13 - зубчатая муфта; 14 - муфта блокировки; 15 - сливная пробка; 16 - зубчатое колесо привода среднего моста; 18 - крестовина; 19 - зубчатое колесо привода заднего моста; 20 - болт крепления чашек; 21 - подшипник; 22 - крышка подшипника

Рис. Работа межколесного дифференциала: а - общая схема; б - при движении прямо; в - при повороте; 1 - корпус дифференциала; 2, 5 - полуосевые зубчатые колеса; 3 - крестовина: 4, 6 - сателлиты; 7 - ведущее зубчатое колесо главной передачи; 8, 9 - полуоси; 10 - ведомое зубчатое колесо главной передачи

Рис. Межосевой дифференциал Torsen: 1, 3 — правая и левая полуосевые шестерни; 2 — корпус дифференциала; 4 — сателлит, связанный с правой полуосевой шестерней; 5, 7 — выходные валы дифференциала; 6 — сателлит, связанный с левой полуосевой шестерней

Среди особенностей свободного дифференциала - способность во время пробуксовки одного колеса (ведущей оси) передавать крутящий момент на другое колесо. Создание блокировки дифференциала было вызвано необходимостью увеличить крутящий момент на том колесе оси, у которого сцепление с дорогой лучше.

Блокировка дифференциала осуществляется следующим образом:

  1. Корпус дифференциала соединяется с одной из полуосей;
  2. Вращение сателлитов ограничивается.

Блокировка дифференциала зависит от степени и может быть как полной так и частичной.

Что такое полная блокировка?

Полной блокировкой дифференциала называют - жесткое соединение частей дифференциала, во время которого происходит полная передача крутящего момента на то колесо, у которого наилучшее сцепление.

Что такое частичная блокировка дифференциала?

Под частичной блокировкой дифференциала подразумевается - ограниченная величина передаваемого усилия среди частей дифференциала и повышение крутящего момента на том колесе, которое имеет лучшее сцепление.

Повышение крутящего момента на свободном колесе называется коэффициентом блокировки. То есть, он отображает соотношение между крутящим моментом на не нагруженном и колесом, которое забегает, то есть пробуксовывает. Коэффициент блокировки у симметричного свободного дифференциала будет равен - 1, поскольку у каждого из колес будет одинаковым. В то время как на заблокированном дифференциале это значение может варьироваться в диапазоне от 3 до 5. Любое дальнейшее увеличение данного коэффициента блокировки крайне нежелательно, поскольку он может стать причиной выхода из строя трансмиссии или некоторых ее деталей.

Используют блокировку дифференциала как межколесные так и межосевые дифференциалы. Чтобы не снижать управляемость, блокировка переднего межколесного дифференциала у полноприводных автомобилях не делается.

Включение блокировки дифференциала может быть принудительным или полностью автоматическим. В случае с принудительной, водитель сам выбирает когда включить блокировку дифференциала, иногда ее еще называют ручной.

Что касается автоматической блокировки, то ее включение осуществляется посредством специальных технических устройств – так называемых самоблокирующихся дифференциалов.

Ручная блокировка дифференциала

Ручная или принудительная блокировка осуществляется, как правило, при помощи кулачковой муфты, которая обеспечивает жесткую сцепку корпуса дифференциала с одной из полуосей.

Замыкание или (размыкание) кулачковой муфты происходит при помощи привода, он может быть: электрическим, механическим, пневматическим или гидравлическим.

Принцип работы механического привода заключается в объединении рычага и тросов, или целой системы рычагов. Такая система позволяет осуществить блокировку дифференциала в ручном режиме на полностью неподвижном автомобиле.

Гидравлический привод блокировки дифференциала состоит из нескольких цилиндров: главного и рабочего. Роль исполнительного элемента пневмопривода выполняет пневмокамера.

В случае с электроприводом муфта замыкается при помощи электрического двигателя. Приведение в действие осуществляется посредством нажатия (активации) отвечающей за эту функцию кнопки, чаще всего расположенной на панели приборов.

Применяется жесткая принудительная блокировка на труднопроходимых участках дороги. Она используется в межколесных, а также межосевых дифференциалах автомобилей с полным приводом.

Самоблокирующийся дифференциал

Дифференциал повышенного трения или самоблокирующийся дифференциал Limited Slip Differential, LSD) можно считать неким компромиссом между полной блокировкой дифференциала и свободным дифференциалом. Это объясняется возможностью реализации функции одного или другого при возникновении такой необходимости.

Существуют два типа самоблокирующихся дифференциалов:

  1. Дифференциалы, которые блокируются руководствуясь разными угловыми скоростями колес.
  2. Дифференциалы, которые блокируются руководствуясь разными крутящими моментами.
  1. Дифференциал с вязкостной муфтой.
  2. Дисковый дифференциал.
  3. Электронную блокировку дифференциала.

Блокировка происходит в зависимости от того, насколько разнятся меж собою крутящие моменты червячный дифференциал.

Примитивный дисковый дифференциал состоит из: симметричного дифференциала, в котором есть один или несколько пакетов фрикционных дисков. Одна часть фрикционных дисков связана с корпусом дифференциала, вторая – с полуосью.

Работает дисковый дифференциал повышенного трения по принципу силы трения, которая возникает в результате разности скоростей, с которой вращаются полуоси.

Во время движения по прямой полуоси и корпус дифференциала вращаются с одинаковой скоростью, следовательно, вращение фрикционного пакета происходит как единое целое. В случае увеличения частоты вращения какой-то из полуосей, часть дисков которая ей соответствует начинает быстрее вращаться. Это действие сопровождается возникновением силы трения, которая не позволяет увеличить частоту вращения. На свободном (не нагруженном) колесе крутящий момент возрастает, благодаря чему достигается частичное блокирование дифференциала.

Степень, до которой сжимаются фрикционные диски может быть как фиксированной (реализуется при помощи пружин постоянной жесткости) так и переменной (за счет применения гидропривода или электронного управления).

На спортивных автомобилях используется преимущественно дисковый дифференциал LSD, или в качестве межосевого дифференциала в автомобилях SUV-сегмента.

Схема вязкостной муфты

Вязкостную муфту еще называют вискомуфтой. Она состоит из определенного набора перфорированных дисков расположенных близко друг от друга. Одна их часть жестко соединена с корпусом дифференциала, вторая – с приводным валом. Расположены диски в герметичном корпусе, который наполнен очень вязкой силиконовой жидкостью.

Схема вязкостной муфты

Во время вращения приводного вала и корпуса дифференциала с одной скоростью, происходит вращение блока перфорированных дисков как одного целого. Когда скорости вращения меняются, определенная часть дисков, которая подчиняется тому или иному блоку начинает быстрее вращаться, перемешивая силиконовую жидкость. После жидкость отвердевает и происходит блокировка дифференциала. При этом в другом приводном валу крутящий момент увеличивается. Когда равенство восстанавливается жидкость снижает свои свойства, снимая, тем самым, блокировку с муфты.

Из-за довольно больших размеров вискомуфта используется преимущественно, для блокировки межосевого дифференциала. Кроме того, вязкостная муфта может быть установлена самостоятельно, вместо межосевого дифференциала, в полноприводной системе с автоматическим подключением.

Особенность конструкции вискомуфты наделяют ее инерционностью, она может порядком нагреваться, а во время торможения может конфликтовать с ABS, именно поэтому на сегодняшний день автомобили практически не оборудуются ею.

Электронный дифференциал или электронная блокировка дифференциала - функция антипробуксовочной системы. Она реализована посредством автоматического подтормаживания того колеса, которое пробуксовывает, сопровождаемого повышением на него силы тяги. Как результат - колесо с нормальным сцеплением получает лучший крутящий момент.

Самоблокирующийся дифференциал червячного типа способен обеспечить автоматическое блокирование в зависимости от того, на сколько разнятся крутящие моменты на корпусе и полуоси. В случае проскальзывания колеса, с последующим падением крутящего момента, происходит блокировка червячного дифференциала, после чего крутящий момент перераспределяется на свободные колеса. В этом случае блокировка частичная, а ее степень в зависит от того насколько упадет крутящий момент.

Схема дифференциала Torsen

Диференциалы Torsen - наиболее известными червячными образцами. Название - аббревиатура от двух англ. слов Torque Sensing - что в переводе означает - чувствительность к крутящему моменту.

Конструктивно дифференциал представляет собой планетарный редуктор, в котором есть несколько червячных шестерен, одни - ведомые (полуосевые) другие - ведущие (сателлиты). Расположение сателлитов чаще всего параллельно полуосям (Quaife, Torsen Т-2), иногда встречаются варианты с перпендикулярным расположением (Torsen Т-1).

Характерной особенностью червячной шестерни считается способность вращать другие шестерни, оставаясь при этом недвижимой. При этом червячная шестерня расклинивается. Это свойство применяется для частичной блокировки червячного дифференциала. Применение червячных самоблокирующихся дифференциалов весьма широкое, они могут выполнять роль как межосевых так и межколесных дифференциалов.

Понравилось? Лайкни нас на Facebook