Зарядное устройство. Виды и работа. Применение и как выбрать. Классификация типов зарядных устройств Заряд постоянным током

В мире существует великое множество зарядных устройств (ЗУ), вот только найти нужное в нашей стране не всегда удается.

Для редких моделей их вообще нет, даже самых простеньких, а для распространенных есть только ЗУ, аналогичные тем, что входят в комплект поставки мобильных телефонов, и автомобильные. Связано это в первую очередь с низким спросом на аксессуары подобного рода. В большинстве случаев потребители считают, что могут вполне обойтись зарядкой, входящей в комплект поставки телефона, и, надо сказать, они правы почти на все 100%. Конечно, «если звезды зажигают, значит, это кому-нибудь нужно». И если зарядки выпускаются (надо сказать – на любой вкус и достаток), значит, это тоже кому-нибудь нужно. Наша задача – рассказать вам о том, какие бывают ЗУ и какие функции они выполняют, а также о том, на что стоит обратить внимание при покупке ЗУ. Зарядные устройства отличаются друг от друга способом зарядки батареи, наличием функции разряда и всевозможными видами индикации. В ЗУ, которые входят в комплект поставки мобильного телефона, как правило, индикатором заряда является сам телефон, точнее, его экран, на котором высвечивается уровень заряда батареи. Такие ЗУ функцией разряда не обладают (в отличие, скажем, от настольных зарядок). Какие еще типы ЗУ существуют в природе?
1.Для разных типов аккумуляторов выпускаются разные ЗУ. Так, существуют зарядки для аккумуляторов на основе никеля (никель-кадмиевые (NiCd) и никель-металлгидридные (NiMH)), для литий-ионных (Li-Ion) аккумуляторов и комбинированные.
2.В зависимости от конструкции ЗУ могут быть встроены в телефон или в выносной блок питания (предназначены для заряда аккумуляторов непосредственно в телефоне); они могут быть настольными (обеспечивают как заряд, так и разряд) или ручными (компания Motorola выпустила ЗУ под названием Motorola FreeCharge, которое работает на ручной подзарядке).
3.ЗУ, как уже говорилось выше, могут различаться по способу заряда: есть устройства, осуществляющие заряд постоянным током, и устройства с импульсным способом заряда.
4.По времени заряда различаются «быстрые» и «медленные» ЗУ.
5.По типу входного напряжения питания различаются ЗУ, подключаемые к сети напряжения переменного тока, и ЗУ, подключаемые к бортовой сети автомобиля (обеспечивают питание телефона от сети с напряжением 12 или 24 В от автомобильного прикуривателя и заряжают запасную батарею).
6.В зависимости от выполняемых функций различаются также бытовые и профессиональные ЗУ.

Наиболее широкое распространение получили зарядки, входящие в комплект поставки мобильного телефона. Эти устройства доставляют пользователям минимум беспокойства и рассчитаны на работу с NiCd-, NiMH- и Li-Ion-батареями. Такие ЗУ одинаково эффективно будут заряжать все указанные типы батарей, но у них, как мы упоминали выше, есть один недостаток: дело в том, что аккумуляторы на основе никеля необходимо периодически разряжать, дабы снизить «эффект памяти» (возникает из-за того, что напряжение, при котором происходит отключение телефона, превышает напряжение, до которого необходимо разрядить батарею, чтобы предотвратить уменьшение емкости, возникающее в процессе эксплуатации). Для таких аккумуляторов рекомендуется использовать настольное ЗУ с функцией разряда. (Внимание: после окончания заряда никелевые батареи не следует надолго оставлять в ЗУ, так как ЗУ продолжает их заряжать, но только значительно меньшим током. Длительное нахождение таких батарей в ЗУ приводит к чрезмерному заряду и ухудшению их параметров.)

Автомобильные ЗУ созданы для тех, кто проводит большую часть жизни за рулем. Самое простое из них выполнено в виде шнура, соединяющего сотовый телефон с гнездом автомобильного прикуривателя. Это очень просто и очень удобно, но не следует злоупотреблять таким способом заряда, особенно во время поездок по городу, так как частые остановки и, соответственно, многократный пуск двигателя могут существенно подсократить срок жизни батареи.

При эксплуатации ЗУ важно правильно определять время окончания заряда. «Медленные» ЗУ (используются для NiCd- и NiMH-аккумуляторов; ток заряда составляет 10% от номинальной емкости аккумулятора (номинальная электрическая емкость – то количество энергии, которым батарея теоретически (в идеале) должна обладать в заряженном состоянии), время заряда – 10 – 12 часов) обычно не особо чувствительны к небольшим нарушениям времени заряда: если аккумулятор при малом зарядном токе побудет в ЗУ, предположим, на 1 – 2 часа дольше положенного времени, это не приведет к критическим последствиям.

Иное дело – «ускоренные» ЗУ. Дело в том, что для аккумуляторной батареи опасно получать излишний заряд на большом токе и, соответственно, перегреваться. «Ускоренные» ЗУ заряжают батарею током равным 33 – 100% от ее номинальной емкости. Время заряда составляет 1 – 3 часа.

О завершении процесса заряда в некоторых дешевых зарядках можно узнать, ориентируясь на достижение конкретного значения напряжения на аккумуляторной батарее. Трудности с правильной оценкой степени заряда батареи объясняются тем, что напряжение может варьироваться в зависимости от температуры окружающей среды и скорости заряда.

Существуют ЗУ, в которых время заряда отсчитывается с помощью специального таймера: по истечении определенного времени ток на аккумулятор перестает подаваться. Проблема в том, что если после заряда снова установить батарею в такое ЗУ (например, по ошибке), оно снова «добросовестно», в строго отсчитанное таймером время, отдаст батарее еще одну порцию зарядного тока, в результате чего «жизнь» аккумуляторной батареи сократится.

Сложные ЗУ оснащены микроконтроллером, который позволяет более точно отследить окончание заряда батареи и еще несколько параметров: напряжение батареи, ток, температуру и другие переменные значения. В еще более сложных ЗУ имеется датчик внешней температуры (она очень сильно влияет на процесс зарядки).

Импульсный заряд, который применяется в кондиционирующих ЗУ и анализаторах аккумуляторных батарей, наиболее подходит для NiCd- и NiMH-батарей. Суть этого способа заключается в том, что аккумулятор в течение определенных периодов времени получает заряд и разряд короткими импульсами. Разрядные импульсы тока призваны минимизировать формирование нежелательных кристаллов на пластине NiCd- и NiMH-аккумуляторов, что в свою очередь минимизирует «эффект памяти» и увеличивает срок службы аккумулятора. Однако аккумуляторы с большим «эффектом памяти» один только импульсный заряд не спасет – для того чтобы разрушить более стойкие кристаллические образования, им необходим глубокий разряд (восстановление) по специальному алгоритму. Обычные ЗУ, даже с функцией разряда, на это не способны.

Исследования, проводимые в лаборатории сервисного центра «Квазар-Микро-Радио», показали, что периодическое (не реже одного раза в квартал) восстановление аккумуляторов в анализаторе, использующем импульсный заряд, в среднем на 20% увеличивает срок жизни NiCd-аккумуляторов, и на 8% – NiMH, находившихся в эксплуатации не более года.

Итак, если вы желаете своему аккумулятору долгих лет жизни, приобретайте настольные зарядные устройства. Но учтите, что далеко не все устройства подобного типа способны эффективно заряжать Li-Ion-батареи. Так, например, компания Motorola четко оговаривает в своих инструкциях, что для заряда Li-Ion-батарей следует использовать только ЗУ с логотипом «EP» (Expert Performance). Кроме того, каждое ЗУ рассчитано на заряд батарей определенной емкости. Так, «медленное» ЗУ, рассчитанное на заряд батарей небольшой емкости, может не полностью зарядить батарею большой емкости, даже если будет увеличено время заряда. И наоборот: «быстрое» ЗУ (с большим током заряда) может чрезмерно зарядить батарею с небольшой емкостью.

И еще: при покупке зарядного устройства обязательно обратите внимание на правила его эксплуатации (назначение, функции, особенности и ограничения использования), и тогда ваш мобильник не будет в самый не подходящий момент требовать подзарядить аккумулятор.

Ну и в качестве постскриптума – информация к размышлению (а стоит ли игра свеч?):

1. Любой телефон «морально» устаревает за 1 – 3 года.
2.Даже при самом плохом обращении аккумулятор способен проработать год-полтора.
3.Стоимость нового аккумулятора в большинстве случаев сопоставима или даже ниже стоимости навороченной зарядки.
4.Новый сотовый телефон может не подходить к ЗУ, купленному ранее.

Типы зарядных устройств. Правила техники безопасности при зарядке АКБ.

Наиболее распространенные типы зарядных устройств:

Ускоренные ЗУ 1–3-часовые;

Не всякий тип аккумуляторной батареи можно заряжать в ускоренном зарядном устройстве; так, например, свинцово-кислотный аккумулятор не сможет зарядиться так быстро, как никелево-кадмиевый.

Определение окончания заряда исключительно важно в ускоренных зарядных устройствах, так как более длительный заряд аккумулятора на больших токах и соответственно повышение температуры опасны для аккумуляторной батареи.

Медленные ЗУ 14–16-часовые (иногда 24-часовые);

Если Ni-Cd аккумулятор заряжать током в 1 С (100% током от номинальной емкости в течение часа), то типичная эффективность заряда по емкости будет составлять 0,91 (для идеального аккумулятора будет – 1). Для 100%-ного заряда следует заряжать 66 минут. На медленном заряде в 0,1 С (10%-ным током от номинальной емкости в течение 10 часов) эффективность заряда по емкости составит 0,71.
Причиной низкой эффективности заряда является то, что часть энергии заряда, поглощенного батареей, расходуется через рассеяние в тепло. Поэтому в медленном ЗУ (ток равен 0,1 С, т. е. 10% от номинальной емкости – см. оценку емкости) аккумулятор рекомендуют заряжать в течение 14–16 часов (не следует воспринимать это как заряд на 140%!), а не в течение 10 часов.

Обычно медленные зарядные устройства (для Ni-Cd, Ni-MH аккумуляторов ток зарядки равен 10% от номинальной емкости аккумулятора) не определяют окончание заряда, поскольку при малом зарядном токе более длительное нахождение аккумулятора в ЗУ, скажем, на 1–2 часа, не приводит к критическим последствиям.

Кондиционирующие ЗУ;

Предпочтение кондиционирующих зарядных устройств заключается в том, что, постоянно заряжая Ni-MH и Ni-Cd аккумуляторы в этих ЗУ, можно заметно увеличить срок жизни аккумуляторов (не забывая о правилах эксплуатации аккумуляторов!)

Автомобильные аккумуляторы – это сложная и опасная техника. В их изготовлении использованы ядовитые и опасные химические вещества, способные нанести вред организму человека при несоблюдении элементарных правил безопасной работы с АКБ. Обращаться с ними нужно, соблюдая технику безопасности, так как в составе аккумуляторных батарей присутствуют опасные взрывчатые и вредные ядовитые вещества:

Серная кислота – крайне опасна, токсична, легко вступает в реакцию со всеми элементами, вызывает ожоги, возгорание, отравление парами. При взаимодействии с водой, в случае приготовления электролита, выделяется очень много тепла и газа. Заряженные автомобильные аккумуляторы имеют 30-40% концентрацию серной кислоты в электролите, а разряженные – только 10% или менее. В ее составе присутствуют малые доли мышьяка, марганца, тяжелых металлов, оксида азота, железа, меди, хлористых соединений.

Свинец – свинец и соли свинца (сульфат свинца) являются крайне ядовитыми веществами. Токсичность свинца не имеет такого яркого моментального эффекта, как серная кислота, зато он имеет свойство накапливаться в организме, поражая жизненно важные органы, например, почки. Постоянное отравление свинцом вызывает головную боль, усталость, боли в области сердца.

Мышьяк – очень ядовит. Отравление наступает при попадании всего 5 мг в организм человека, причем он также накапливается, вызывая серьезные последствия. Соединения мышьяка также ядовиты. Вызывает головную боль, рвоту, боли в животе, нервные расстройства.

Водород – это взрывоопасный и пожароопасный газ. При соотношении примерно равном 2 к 5 водород и кислород образуют гремучий газ, который может вызвать сильный взрыв. Ежегодно десятки тысяч людей страдают от ожогов и ран при взрыве гремучего газа при работе с аккумуляторами.

Правила безопасности при работе с аккумулятором:

1) Заряжать автомобильные аккумуляторы можно только в хорошо проветриваемом помещении или при постоянном доступе воздуха.

2) Работать с электролитом можно только в резиновых перчатках и защитных очках, поверхность кожи должна быть максимально закрыта одеждой.

3) НЕЛЬЗЯ вливать дистиллированную воду в серную кислоту, только кислоту в воду, потому что вода легче кислоты, попадая на ее поверхность, она закипает и разбрызгивает ядовитую жидкость вокруг. Кислота, попадая в воду, сразу тонет и не может разбрызгиваться.

4) НЕЛЬЗЯ курить, зажигать что-либо, использовать неисправные электроприборы, которые могут дать искру, при зарядке аккумулятора.

5) Перед зарядкой АКБ необходимо выпустить скопившиеся газы, почистить газоотвод. Даже при полной зарядке аккумулятора, когда Вы его устанавливаете, нужно подождать, пока улетучатся все газы.

6) Проветривайте подкапотное пространство перед установкой автомобильного аккумулятора на посадочное место. Подключайте спустя какое-то время, не пробуйте вызвать «искру» во избежание взрыва.

7) НЕЛЬЗЯ заряжать автомобильные аккумуляторы в закрытом помещении, где находятся люди, например, в квартире. Испарение паров ядовитых соединений может стать причиной легкого отравления, вызывающего типичные симптомы химического отравления: головную боль, тошноту, резь в глазах, усталость, нервное расстройство и раздражительность.

1. Общие требования безопасности.
1.1. К работе по зарядке и обслуживанию аккумуляторных батарей допускаются лица, прошедшие медицинское освидетельствование, вводный инструктаж по охране труда, инструктаж на рабочем месте, овладевшие практическими навыками безопасного выполнения работ и прошедшие проверку полученных при инструктаже знаний и навыков.
1.2. Аккумуляторщики в процессе работы обязаны соблюдать правила внутреннего трудового распорядка предприятия.
Курить разрешается в специально отведенных для этой цели местах, обеспеченных средствами пожаротушения.
1.3. Необходимо содержать рабочее место в порядке и чистоте, складывать сырье, заготовки, изделия и отходы производства в отведенных местах, не загромождать проходы и проезды.
1.4. На работника могут воздействовать опасные и вредные производственные факторы (движущиеся машины и механизмы, перемещающиеся грузы, производственный микроклимат, повышенная взрывоопасная концентрация водорода, едкие кислоты и щелочи).
1.5. Аккумуляторщик должен быть обеспечен спецодеждой и средствами индивидуальной защиты:
костюмом хлопчатобумажным с кислотозащитной пропиткой;
полусапогами резиновыми;
перчатками резиновыми;
фартуком резиновым;
очками защитными.
1.6. Работающие по зарядке аккумуляторных батарей должны строго соблюдать требования безопасности при работе с кислотами и едкими щелочами, которые при неправильном обращении могут вызвать химические ожоги, а при повышенной концентрации паров в воздухе - отравление.
1.7. При зарядке аккумуляторных батарей выделяется водород, который вносит в воздух мелкие брызги электролита. Водород при скоплении может достигнуть взрывоопасной концентрации, поэтому без вентиляции зарядку аккумуляторов производить нельзя.
1.8. Необходимо соблюдать правила электробезопасности при присоединении аккумуляторных батарей.
1.9. Лица, занятые на зарядке аккумуляторов, должны хорошо знать и строго выполнять все требования, изложенные в данной инструкции, а администрация предприятия обязана создать нормальные условия труда и обеспечить рабочее место аккумуляторщика всем необходимым для безопасного выполнения порученной ему работы, а также средствами первой помощи для предупреждения химических ожогов электролитом (проточной водопроводной водой для смывания брызг кислоты или щелочи; 1-% раствором борной кислоты для нейтрализации щелочи).
1.10. Аккумуляторщики должны знать и соблюдать правила личной гигиены.
1.11. Аккумуляторщики должны уметь оказать первую помощь пострадавшему при несчастном случае.
1.12. Инструкции по охране труда должны выдаваться всем аккумуляторщикам под расписку.
1.13. Обученные и проинструктированные аккумуляторщики несут полную ответственность за нарушение требований инструкции по охране труда согласно действующему законодательству.
2. Требования безопасности перед началом работы
2.1. Надеть исправную спецодежду, резиновые сапоги и подготовить индивидуальные средства защиты (прорезиненные нарукавники, резиновые перчатки и защитные очки), застегнуть обшлага рукавов, брюки кислотостойкого костюма надеть поверх голенищ сапог, надеть резиновый фартук (нижний край его должен быть ниже верхнего края голенищ сапог), заправить одежду так, чтобы не было развевающихся концов, волосы подобрать под плотно облегающий головной убор.
2.2. Внимательно осмотреть рабочее место, привести его в порядок, убрать все мешающие работе предметы. Рабочий инструмент, приспособления и вспомогательные материалы расположить в удобном для пользования порядке и проверить их исправность.
2.3. Проверить и убедиться в исправной работе приточно-вытяжной вентиляции и местных отсосов;
проверить достаточность освещения рабочего места;
убедиться в отсутствии посторонних лиц в помещении.
3. Требования безопасности во время работы.
3.1. В помещении для зарядки аккумуляторов не допускать зажигания огня, курения, искрения электроаппаратуры и другого оборудования.
3.2. Присоединение клемм аккумуляторов на зарядку и отсоединение их после зарядки производить только при выключенном оборудовании зарядного места.
3.3. При осмотре батарей пользоваться переносной лампой безопасного напряжения 12 В.
Перед включением переносной электролампы в сеть во избежание искрения сначала вставить в штепсельную розетку, а затем включить рубильник; при выключении электролампы прежде выключить рубильник, а затем вынуть вилку.
3.4. Не касаться одновременно двух клемм аккумуляторов металлическими предметами во избежание короткого замыкания и искрения.
3.5. Проверку напряжения аккумуляторных батарей производить только вольтметром.
3.6. При снятии и установке аккумуляторов на электрокар следить, чтобы не произошло замыкания их с металлическими частями электрокара.
3.7. Присоединение батарей к электросети постоянного тока и соединение аккумуляторов между собой производить в резиновых перчатках и резиновой обуви.
3.8. Не прикасаться руками без резиновых перчаток к токоведущим частям (клеммам, контактам, электропроводам). В случае необходимости применения инструмента пользоваться инструментом с изолированными рукоятками.
3.9. При работе с кислотой, кислотным и щелочным электролитом и приготовлении электролита соблюдать следующие требования:
кислоту надлежит хранить в бутылях с закрытыми притертыми пробками в специальных обрешетках, в отдельных проветриваемых помещениях. Бутыли с кислотой должны быть установлены на полу в один ряд. Порожние бутыли из-под кислоты следует хранить в аналогичных условиях;
на всех сосудах с электролитом, дистиллированной водой, содовым раствором или раствором борной кислоты, бутылях с кислотой должны быть нанесены четкие надписи (наименования) жидкости;
перенос бутылей должен производиться двумя лицами при помощи специальных носилок, на которых бутыль надежно закреплена. Предварительно проверить исправность носилок;
розлив кислоты из бутылей должен производиться с принудительным наклоном при помощи специальных устройств для закрепления бутылей. Допускается розлив кислоты с использованием специальных сифонов;
приготовление электролита производить только в специально отведенном помещении;
при приготовлении электролита необходимо лить тонкой струей серную кислоту в дистиллированную воду, все время помешивая электролит;
запрещается лить дистиллированную воду в серную кислоту, так как вода в соприкосновении с кислотой быстро нагревается, вскипает и, разбрызгиваясь, может нанести ожоги;
приготовление электролита производить только в свинцовой, фаянсовой или эбонитовой ваннах. Приготовление электролита в стеклянной посуде запрещается, так как от резкого разогрева она может лопнуть;
запрещается работать с кислотой без защитных очков, резиновых перчаток, сапог и резинового фартука, предохраняющих от возможного попадания капель кислоты на тело или в глаза работающего;
дробление кусков едкой щелочи должно производиться с применением специальных совков, щипцов, пинцетов и мешковины. Работающий должен быть защищен резиновым фартуком, резиновыми перчатками и защитными очками;
не перемешивать электролит в ванне путем вдувания воздуха через резиновый шланг.
3.10. При зарядке батарей не наклоняться близко к аккумуляторам во избежание ожога брызгами кислоты, вылетающими из отверстия аккумулятора.
3.11. Аккумуляторные батареи перевозить в специальных тележках с гнездами по размеру батарей. Переноску аккумуляторных батарей вручную, независимо от их количества, не производить, кроме перестановок.
3.12. Не касаться нагретых спиралей сопротивлений.
3.13. Строго соблюдать меры индивидуальной предосторожности: принимать пищу только в отведенном для этой цели помещении. Перед едой вымыть руки и лицо с мылом и прополоскать рот водой. Не хранить пищу и питьевую воду в аккумуляторном помещении;
ежедневно производить уборку столов и верстаков, протирая их тряпкой, смоченной в содовом растворе, а раз в неделю производить чистку стен, шкафов и окон.
4. Требования безопасности в аварийных ситуациях.
4.1. В случае попадания серной кислоты на кожу или в глаза немедленно смыть ее обильной струей воды, затем промыть 1-% раствором питьевой соды и доложить мастеру.
В случае признаков отравления от повышенной концентрации серной кислоты в воздухе выйти на свежий воздух, выпить молока и питьевой соды и доложить мастеру.
4.2. В случае попадания щелочи (едкого кали или едкого натра) на кожу или в глаза немедленно смыть ее обильной струей воды и промыть 3%-м раствором борной кислоты.
В случае признаков отравления от повышенной концентрации щелочи в воздухе выйти на свежий воздух, выпить молока и доложить мастеру.
4.3. При поражении электрическим током необходимо:
освободить пострадавшего от действия электрического тока;
освободить от стесняющей его одежды;
обеспечить доступ чистого воздуха к пострадавшему, для чего открыть окно и двери или вынести пострадавшего из помещения и делать искусственное дыхание;
вызвать врача.
4.4. При возникновении пожара вызвать пожарную охрану, известить администрацию предприятия и приступить к его тушению имеющимися средствами.
5. Требования безопасности по окончании работы.
5.1. Привести в порядок рабочее место.
Инструмент и приспособления протереть и сложить на отведенное для них место.
5.2. Надежно закрыть краны емкостей с кислотой и электролитом.
5.3. Сообщить мастеру или сменщику обо всех неисправностях и недостатках, замеченных во время работы, и о принятых мерах к их устранению.
5.4. Снять и сдать на хранение в установленном порядке спецодежду, средства индивидуальной защиты.
5.5. Вымыть руки и лицо теплой водой с мылом, хорошо прополоскать рот или принять душ.

Мобильная Справочная (c) 2003г

Важнейшим условием успешной работы любой аккумуляторной батареи является ее правильная зарядка, которая зависит от грамотного выбора зарядного устройства (ЗУ) и его использования. Выбор зарядного устройства влияет на производительность и срок службы аккумуляторных батарей, хотя пользователь не всегда может это сделать.
Наиболее распространенные типы зарядных устройств :

  • ускоренные ЗУ 1–3-часовые;
  • медленные ЗУ 14–16-часовые (иногда 24-часовые);
  • кондиционирующие ЗУ.

Не всякий тип аккумуляторной батареи можно заряжать в ускоренном зарядном устройстве; так, например, свинцово-кислотный аккумулятор не сможет зарядиться так быстро, как никелево-кадмиевый.
Если Ni-Cd аккумулятор заряжать током в 1 С (100% током от номинальной емкости в течение часа), то типичная эффективность заряда по емкости будет составлять 0,91 (для идеального аккумулятора будет – 1). Для 100%-ного заряда следует заряжать 66 минут. На медленном заряде в 0,1 С (10%-ным током от номинальной емкости в течение 10 часов) эффективность заряда по емкости составит 0,71.
Причиной низкой эффективности заряда является то, что часть энергии заряда, поглощенного батареей, расходуется через рассеяние в тепло. Поэтому в медленном ЗУ (ток равен 0,1 С, т. е. 10% от номинальной емкости – см. оценку емкости) аккумулятор рекомендуют заряжать в течение 14–16 часов (не следует воспринимать это как заряд на 140%!), а не в течение 10 часов.
На правильность зарядки может влиять как сам пользователь, так и собственно принцип работы того или иного зарядного устройства.
В зависимости от типа аккумуляторной батареи, ее конструкции, времени заряда и т. д., существуют различные принципы работы зарядных устройств.

Принципы работы зарядных устройств

Важным моментом для большинства зарядных устройств является определение окончания заряда. Обычно медленные зарядные устройства (для Ni-Cd, Ni-MH аккумуляторов ток зарядки равен 10% от номинальной емкости аккумулятора) не определяют окончание заряда, поскольку при малом зарядном токе более длительное нахождение аккумулятора в ЗУ, скажем, на 1–2 часа, не приводит к критическим последствиям.
Определение окончания заряда исключительно важно в ускоренных зарядных устройствах, так как более длительный заряд аккумулятора на больших токах и соответственно повышение температуры опасны для аккумуляторной батареи.
В некоторых дешевых зарядных устройствах определение окончания заряда производится по принципу достижения конкретного абсолютного значения напряжения на аккумуляторной батарее. Однако трудность правильной оценки степени заряда аккумулятора в этом случае объясняется тем, что напряжение батареи изменяется при повторном циклировании и может варьироваться в зависимости от температуры и скорости заряда. В некоторых зарядных устройствах реализован принцип отсчитывания конкретного времени заряда с помощью таймера, с последующим прекращением подачи зарядного тока на аккумулятор.
Недостаток данного метода состоит в том, что пользователь, забыв уже о заряженной батарее, может снова установить ее в данное зарядное устройство, которое в свою очередь «добросовестно», в строго отсчитанное таймером время, на этот раз отдаст батарее еще одну порцию зарядного тока, в результате чего «жизнь» аккумуляторной батареи сократится.
Сложные зарядные устройства имеют микроконтроллер, с помощью которого осуществляется более точное обнаружение окончания заряда, используя несколько методов – контролируются напряжение батареи, ток, температура или другие переменные значения. Например, на Ni-Cd элементе по мере заряда напряжение повышается, а затем, в конце процесса заряда, подъем температуры, обусловленный избыточным зарядом, вызывает некоторое снижение напряжения на элементе.
Исследование этой характеристики позволило разработать систему быстрого контролируемого заряда. Такой признак, как снижение в напряжении, называют отрицательной дельтой напряжения Negative Delta V (NDV).
NDV – рекомендуемый метод обнаружения полного заряда для открытого ведения контроля Ni-Cd зарядных устройств и анализаторов, которые обслуживают батареи, не имеющие внутреннего термоэлемента (в некоторых Ni–Cd и Ni-MH современных аккумуляторных батареях для обнаружения полного заряда используется внутренний термоэлемент).
Более совершенные зарядные устройства, использующие NDV-метод, включают в себя и другие методы завершения заряда для более точного определения полного заряда. В более сложных зарядных устройствах имеется еще и датчик внешней температуры, поскольку ее влияние на заряд аккумуляторов играет очень большую роль, так как не все типы аккумуляторных батарей могут заряжаться при низких или при очень высоких температурах. Так, например, эффективность заряда Ni-Cd аккумуляторной батареи в более высоких температурах очень низкая (аккумулятор сможет принять не более 70% емкости при температуре окружающей среды +45°С).
Метод импульсного заряда, который обязательно применяется в кондиционирующих ЗУ и анализаторах аккумуляторных батарей, наиболее подходит для Ni-Cd и Ni-MH аккумуляторных батарей. Суть метода заключается в том, что аккумулятор в течение определенных периодов времени получает заряд и разряд короткими импульсами. Активность такого метода очень высока, так как разрядные импульсы тока ми нимизируют формирование нежелательных пузырей, кристаллов на пластине Ni-Cd и Ni-MH аккумулятора, что в свою очередь минимизирует эффект памяти и увеличивает срок службы аккумуляторной батареи.

Выбор типа зарядных устройств

Приобретать рекомендованные производителем. Каждая фирма-производитель имеет свои технологии производства и соответственно свои особенности эксплуатации зарядных устройств. Использовать ускоренное ЗУ предпочтительнее в том случае, если время заряда аккумулятора более критично. Ускоренное ЗУ дороже обычного и несколько сокращает время действия аккумулятора.
Найти компромисс между жизнью и временем заряда аккумулятора предоставляем пользователю.
Предпочтение кондиционирующих зарядных устройств заключается в том, что, постоянно заряжая Ni-MH и Ni-Cd аккумуляторы в этих ЗУ, можно заметно увеличить срок жизни аккумуляторов (не забывая о правилах эксплуатации аккумуляторов!)

Словарь терминов

– характеризует способность (нагрузочную) аккумуляторной батареи удерживать номинальное напряжение при большом разрядном (отдаваемом) токе.
Глубина разряда – отношение разрядной емкости к номинальной емкости батареи.
Емкость (С) – энергия, которую способен отдать аккумулятор в нагрузку, выражаемая в ампер-часах (А·ч, мA·ч). Она будет больше при следующих условиях: меньшем токе разряда, разряде с меньшими перерывами, более высокой температуре окружающей среды, а также более низком конечном напряжении.
Номинальная – номинальное значение емкости: количество энергии, которую способен отдать полностью заряженный аккумулятор при разряде в строго определенных условиях. Например, емкость свинцово-кислотных батарей с автоматическим регулированием внутреннего давления измеряется, как правило, в условиях 20-часового разряда батареи, в то время как емкости других типов батарей с более высокими скоростями разряда определяются при 10-часовом разряде.
Номинальное напряжение – номинальное значение напряжения батареи. Номинальное напряжение свинцово-кислотных батарей составляет 2 В на элемент, никелево-кадмиевых и никелево- металлогидридных – 1,2 В на элемент, для литиево-ионных – около 3,6 В в зависимости от химического состава.
Саморазряд – потеря емкости в отсутствие внешнего потребителя тока.
Срок службы батареи – наработка, при которой разрядная емкость сделается меньше определенной нормированной величины, обычно оценивается рабочим количеством циклов «заряд-разряд».
Срок хранения – максимальный период времени, в течение которого батарея может храниться при оговоренных условиях, не требуя дополнительной зарядки.
Удельная емкость элемента по массе – отношение разрядной емкости к полной массе (Вт·ч/кг, ватт-часы на килограмм).
Удельная емкость элемента по объему – отношение разрядной емкости к полному объему (Вт*ч/ кубический метр, дюйм или литр).
Циклическое применение – использование батареи с попеременным чередованием зарядки и разрядки. Заряд аккумуляторной батареи с последующим разрядом называется циклом.
Электролиты – вещества, растворы которых проводят электрический ток.
Элемент составная часть аккумуляторной батареи

1. Введение: современные зарядные устройства

Хорошее зарядное устройство является неотъемлемой составляющей частью хорошей аккумуляторной системы. Реалии рынка таковы, что он довольно сильно наполнен различными зарядными устройствами, в большинстве своем – невысокой ценовой категории. Но идеальной ситуацией является максимальное “родство” аккумуляторной батареи и зарядного устройства, они должны работать в паре словно тяговая лошадь и повозка. При разработке и конструировании новых моделей аккумуляторов зарядное устройство к ним должно разрабатываться параллельно, а то и в первую очередь. По факту же мы часто имеем ситуацию, когда зарядное устройство делается уже в спешке и постфактум, что конечно же отображается на функционировании всей аккумуляторной системы. Некоторые производители часто не догадываются о сложностях, которые могут возникнуть из-за недоработок в зарядных устройствах, особенно при зарядке в неблагоприятных условиях.

Рисунок 1: Аккумулятор и зарядное устройство должны взаимодействовать словно тяговая лошадь и повозка. Друг без друга они не обеспечат нужного результата.

Некоторые зарядные устройства для литий-ионных аккумуляторов имеют функцию “пробуждения”, необходимую для восстановления работоспособности аккумуляторов, у которых напряжение упало до критического уровня из-за чрезмерной разрядки. Причиной такого состояния аккумулятора может быть его долгое хранение, во время которого саморазряд понизил напряжение до точки отсечки. Обычное зарядное устройство не способно зарядить такой аккумулятор, поэтому довольно часто он признается неисправным и выбрасывается. Правильный алгоритм восстанавливающей зарядки состоит в том, чтобы применить к аккумулятору небольшой ток заряда, который поднимет напряжение к значению 2,2-2,9 В, что позволит активировать встроенную схему защиты, после чего станет возможна обычная зарядка. Следует быть осторожным в случае, если напряжение литий-ионного аккумулятора опускается ниже 1,5 В. Это может свидетельствовать о наличии в нем дендритов - образований, которые ставят под угрозу безопасность такого аккумулятора. (Смотрите BU-802b: Что происходит при повышенном саморазряде электрической батареи, где на рисунке 5 рассматриваются причины повышенного саморазряда литий-ионного аккумулятора после глубокой разрядки. Смотрите также BU-808a: Как пробудить “спящий” литий-ионный аккумулятор.)

Зарядные устройства для аккумуляторов на основе свинца и лития работают по специальному алгоритму - CC/CV (constant current/constant voltage - с англ. «постоянный ток/постоянное напряжение»). Значение силы тока зарядки постоянно, но при достижении аккумулятором определенного значения напряжения происходит понижение зарядного тока. Каждая электрохимическая система имеет свои определенные значения зарядных токов и напряжений.

Аккумуляторы на основе никеля заряжаются постоянным током без привязки к показателю напряжения аккумулятора. Обнаружение полного заряда фиксируется небольшим падением напряжения после периода устойчивого подъема. Зарядное устройство должно уметь быстро прекращать зарядку после индикации полного заряда, так как перезаряд может привести к внештатным ситуациях - короткому замыканию или выходу из строя элементов. Существует также способ определения полного заряда, основанный на изменении скорости роста температуры аккумулятора. Такой метод зарядки для никелевых аккумуляторов известен как dT/dt и хорошо себя показывает в режимах быстрой зарядки.

Повышение температуры при зарядке является нормальным явлением для никелевого аккумулятора, особенно этот эффект заметен при достижении уровня заряда в 70 процентов. Повышение температуры происходит из-за снижения эффективности зарядки, следовательно, зарядный ток должен быть уменьшен для предотвращения повреждения аккумулятора. Зарядное устройство фиксирует все эти температурные изменения и производит зарядку необходимой силой тока. Если же вы заметили, что заряжаемый аккумулятор все равно долгое время имеет повышенную температуру, то это свидетельствует о неправильном алгоритме зарядного устройства, и в таком случае его следует отключить во избежание повреждения аккумулятора.

NiCd и NiMH аккумуляторы не следует оставлять подключенными к зарядному устройству без присмотра в течение недель и месяцев. В случае отсутствия нужды в их эксплуатации, храните их в прохладном месте и заряжайте перед самым использованием.

Аккумуляторы на основе лития должны всегда оставаться прохладными при зарядке. Если вы заметили, что температура заряжаемого аккумулятора повысилась более чем на 10°С в сравнении с температурой окружающей среды, то зарядку следует прекратить. Благодаря встроенной схеме защиты, литий-ионные аккумуляторы не могут быть перезаряжены, соответственно, не имеет значения, подключен или отключен такой аккумулятор от зарядного устройства. Но в случае необходимости длительного хранения литий-ионного аккумулятора, лучше поместить его в прохладное место и зарядить непосредственно перед использованием.

Классическим примером зарядного устройства является довольно медленный прибор, которому для зарядки аккумулятора порой требуется вся ночь. Это восходит к давним временам, когда простое зарядное устройство для никель-кадмиевого аккумулятора имело постоянную фиксированную силу заряда в 0,1С (одну десятую от номинальной емкости). Такие зарядные устройства не имели функции обнаружения полного заряда, а для его достижения требовалось время от 14 до 16 часов. Достижение полного заряда NiCd фиксировалось небольшим повышением температуры аккумулятора. Для NiMH аккумулятора такой алгоритм зарядки не подходит из-за пониженной способности поглощать чрезмерный заряд. Современные недорогие зарядные устройства для типоразмеров АА, ААА и С часто используют именно этот алгоритм, поэтому в случае необходимости постоянной автономной готовности к работе устройства, следует запастись несколькими комплектами аккумуляторных батарей. Также при эксплуатации такого зарядного устройства необходимо следить за температурой аккумуляторов.

Если брать во внимание скорость зарядки, то зарядные устройства можно разделить на три группы - с медленной, средней и быстрой зарядкой. Зарядное устройство со средним временем зарядки, которое составляет 5-6 часов, в основном используется для потребительских устройств. Как правило, у него есть встроенная система обнаружения полного заряда и датчик температуры для обеспечения более безопасного процесса зарядки.

Phoenix Charger Skylla-i Skylla-TG
12/24В, 16-200А 24В, 80-500А 24/48В, 30-500А
Мощные профессиональные зарядные устройства для яхт, катеров и другого вида транспорта. Предлагаются однофазные и трехфазные зарядные устройства высокой мощности. Многостадийный адаптивный заряд с возможностью ручного управления.

Быстрые зарядные устройства имеют ряд преимуществ и самым очевидным из них является скорость зарядки. Возможность реализации этих преимуществ предполагает более тесную связь между зарядным устройством и аккумулятором. При скорости зарядки в 1С (Смотрите BU-402: Что такое С-рейтинг ), которую обычно использует быстрое зарядное устройство, полностью разряженный никель-кадмиевый или никель-металл-гидридный аккумулятор могут зарядиться всего лишь за один час. По мере того как аккумулятор приближается к полному заряду, некоторые зарядные устройства для никель-кадмиевой электрохимической системы уменьшают зарядный ток во избежание негативных эффектов перезаряда. Полностью заряженный аккумулятор переключает зарядное устройство в режим капельной подзарядки, также известной как обслуживающий заряд. Большинство современных зарядных устройств для никель-кадмиевой электрохимической системы имеют алгоритм зарядки и для никель-металл-гидридной, который отличается отсутствием режима капельной подзарядки.

Сила тока в холостом режиме зарядного устройства должна быть как можно ниже для экономии энергии. Существует система пятибального оценивания этой энергоэффективности, называемая Energy Star. Смысл оценивания состоит в назначении зарядным устройствам для мобильных телефонов и других гаджетов определенного количества звезд. Пять звезд получают зарядные устройства с мощностью холостого режима в 30 мВт и меньше; четыре звезды отвечают за диапазон 30-150 мВт; три звезды - 150-250 мВт; две - 250-350 мВт. Зарядные устройства с еще большей холостой мощностью получают, соответственно, самую низкую оценку - одну звезду. Energy Star призвана сократить потребление электроэнергии зарядными устройствами, которые и при холостом режиме по каким-то причинам остаются подключенными к электросетям. Количество таких зарядных устройств на нашей планете оценивается в один миллиард (!).

    Используйте только зарядное устройство, предназначенное для определенной электрохимической системы. Большинство зарядных устройств предназначены только для одной электрохимической системы. Убедитесь, что напряжение аккумуляторной батареи согласуется с зарядным устройством. Не заряжайте аккумулятор при различии значений напряжения.

    Реальный показатель емкости аккумулятора может немного отличаться от номинального. Зарядка аккумулятора большей емкости занимает и больше времени. Не следует использовать зарядное устройство к аккумулятору с емкостью, превышающей спецификации зарядного устройства более, чем на 25 процентов.

    Использование зарядного устройства более высокой мощности сокращает время зарядки, но существуют ограничения относительно того, как быстро аккумулятор может быть заряжен. Ультрабыстрая зарядка в любом случае вызывает некоторый стресс аккумулятора.

    Зарядное устройство для свинцово-кислотного аккумулятора должно переключаться в режим поддержания заряда при полном насыщении, а для никелевого необходима капельная подзарядка после полного заряда. Поддержание заряда и капельная подзарядка призваны компенсировать потери саморазряда.

    При необходимости, зарядное устройство должно иметь датчик температуры для фиксации полного заряда или неисправности аккумулятора.

    Соблюдайте температурные режимы зарядки. Свинцово-кислотный аккумулятор должен оставаться чуть теплым на ощупь; никелевый нагревается к концу заряда, но сразу остывает при полном заряде. Температура же литий-ионного не должна превышать температуру окружающей среды более чем на 10°С.

    Особо следите за температурой при использовании сомнительного недорогого зарядного устройства.

    Производите зарядку при комнатной температуре. Более низкая температура скажется на скорости и качестве зарядки. Литий-ионные аккумуляторы не могут быть заряжены при отрицательных значениях температуры.

Зарядное устройство предназначено для зарядки никель-кадмиевых (NiCd) и никель-металгидридных (NiMH) аккумуляторов типоразмера АА и ААА.Оно не пртендует на оригинальность или новизну. Схема зарядного устройства отличается простотой и надежностью. За время эксплуатации более 10 лет отказов в работе не было. В схеме нет каких-либо регулирующих элементов, зарядный ток устанавливается автоматически. Зарядное устройство позволяет заряжать, как один аккумулятор, так и батарею из нескольких аккумуляторов. При этом зарядный ток изменяется незначительно.

Особенность схемы является гальваническая связь с электрической сетью 220 В, что требует соблюдения мер электробезопасности. В качестве диодов D1 - D7 используются диоды КД 105 или им подобные. Светодиод D8 - АЛ307 или ему подобный, желаемого цвета свечения. Диоды D1 - D4 могут быть заменены на диодную сборку КЦ405А.Резистором R3 можно подобрать необходимую яркость свечения светодиода.

Конденсатор С1 задает необходимый зарядный ток. Емкость конденсатора рассчитывается по следующей эмпирической формуле:

В = (220 - Uедс) / J

где: C1 в мкФ; Uедс - напряжение на аккумуляторной батареи в В; J - необходимый зарядный ток в А.

Пример - необходимо расчитать емкость конденсатора для зарядки батареи из 8 никель-кадмиевых аккумуляторов емкостью 700 mAh. Зарядный ток (J) будет составлять 0.1 емкости аккумулятора - 0.07 А. Uедс 1.2 х 8 =9.6 В.Следовательно В = (220 - 9.6) / 0.07 = 3005.7.Далее А = 3005.7 - 200 = 2805.7.Емкость конденсатора составит С1 = 3128 / 2805.7 = 1.115 мкФ. Принимается ближайший по номиналу - 1мкФ. Рабочее напряжение конденсатора должно быть не менее 400 В.Конденсатор должен быть только бумажный, использование электролитических конденсаторов не допускается. Рассеиваемая мощность резистора R2 определяется величиной зарядного тока. Для зарядного тока 0.07 А она будет 0.98 Вт (P= JxJxR). Выбирается резистор с рассеиваемой мощность 2 Вт. Конденсатор может быть составлен из нескольких конденсаторов по параллельной, последовательной или смешанной схемам. Зарядное устройство не боится коротких замыканий. После сборки зарядного устройства можно проверить заряный ток, подключив вместо аккумуляторной батарей амперметр. Перед включением зарядного устройства в электрическую сеть необходими подключит к нему аккумуляторню батарею. Если аккумуляторная батарея подключена с нарушением полярности, то будет светиться светодиод D8 (до подключения зарядного устройства к электрической сети). При правильном подключении аккумуляторной батареи и подключении заряного устройства к электрической сети светодиод сигнализирует о прохождении зарядного тока через аккумуляторную батарею.

Понравилось? Лайкни нас на Facebook