Водородный двигатель, «Тойота». Toyota Mirai с водородным двигателем

После исчерпывания природных запасов нефти, людям придется полностью положиться на альтернативные виды получения энергии. Водородный двигатель, как замена ДВС, работающих на черном золоте, является одной из перспектив будущих десятилетий.

Силовые установки такого типа имеют больший КПД и меньшую степень токсичности выхлопных газов. Впрочем, главное преимущество моторов, работающих на водороде, – неограниченный запас сырья для производства топлива. Вода, именно она может стать основой топлива будущего.

Интерес к использованию водорода появился еще во время топливного кризиса 70-х годов, но первый водородный двигатель был изобретен только в начале XIX столетия. Действительное применение технология получила во время блокады Ленинграда, когда водородом заправляли лебедки аэростатов, транспорт.

Несмотря на очевидные преимущества, знания способов получения водорода и его использования для работы двигателя внутреннего сгорания, существует несколько значительных «но», замедляющих внедрение этой прогрессивной технологии.

Особенности водорода, как топлива для ДВС

  • после сгорания остается только водяной пар;
  • реакция происходит намного быстрей, чем в случаи с бензином либо дизелем;
  • детонационная устойчивость позволяет повысить степень сжатия;
  • благодаря своей летучести, водород способен проникать в самые малые полости, зазоры между деталями (лишь особые сплавы повышенной прочности способны переносить разрушительное воздействия водорода на структуру металла);
  • теплоотдача сгорания водорода в 2,5 раза больше, чем у бензиновой смеси;
  • широкий диапазон реакции. Минимальная пропорция водорода, достаточная для реакции с кислородом, составляет всего 4%. Такая особенность позволяет настраивать режимы работы двигателя, дозируя консистенцию смеси;
  • хранение водорода осуществляется в сжатом или жидком агрегатном состоянии. При пробое бака, газ под давлением испаряется.

Ввиду перечисленных выше особенностей, использования водорода, как чистого топлива для ДВС, невозможно без внедрения изменений конструкции силового агрегата, а также навесного оборудования.

Устройство и принцип работы

Главное отличие двигателей на водороде от привычных нам сейчас бензиновых либо дизельных аналогов заключается в способе подачи и воспламенении рабочей смеси. Принцип преобразования возвратно-поступательных движений КШМ в полезную работу остается неизменным. Ввиду того что горение топлива на основе нефтепродуктов происходит медленно, камера сгорания наполняется топливно-воздушной смесью немного раньше момента поднятия поршня в свое крайнее верхнее положение (ВМТ). Молниеносная скорость реакции водорода позволяет сдвинуть время впрыска к моменту, когда поршень начинает свое возвратное движение к НМТ. При этом давление в топливной системе не обязано быть высоким (4 атм. достаточно).

В идеальных условиях водородный двигатель может иметь систему питания закрытого типа. Процесс смесеобразования происходит без участия атмосферного воздуха. После такта сжатия в камере сгорания остается вода в виде пара, который проходя через радиатор, конденсируется и превращается обратно в Н2О. Такой тип аппаратуры возможен в том случаи, если на автомобиле установлен электролизер, который отделит с полученной воды водород для повторной реакции с кислородом.

На практике такой тип системы осуществить пока что сложно. Для исправной работы и уменьшения силы трения в моторах используется масло, испарения которого являются частью отработанных газов. На современном этапе развития технологий устойчивая работа и беспроблемный запуск двигателя, работающего на гремучем газе, без использования атмосферного воздуха неосуществимы.

Гибридные модели и возможные модификации

Благодаря большому интересу к использованию водорода в качестве топлива для ДВС, гидродвигатели внутреннего сгорания имеют различные модификации и типы исполнения.

Схема устройства гибридного водородного двигателя

Мотор, разработанный В.С. Кащеевым, имеет иное устройство. Помимо впускного клапана (6) для подачи воздуха, выпускного для вывода выхлопных газов (7), ГБЦ имеет отдельный клапан для подачи водорода (9) и свечу зажигания (10), которые находятся в предкамере (8). Последняя расположена в ГБЦ выше уровня поршня в положении НМТ.

После преодоления поршнем НМТ в камеру сгорания подается и воспламеняется водород (предварительно поршень затягивает воздух через впускные клапаны). В это же самое время открываются выпускные клапаны. Из-за разницы атмосферного давления, отработанные газы устремляются в выпускной коллектор, создавая за собой вакуум, который перемещает поршень к ВМТ и за счет импульса обратно в крайнее нижнее положение. Как видим, принцип немного отличается, но суть остается неизменной.

Технология гибридных силовых установок – это промежуточная ступень между началом использования водорода в качестве топлива и полным отказом от использования нефтепродуктов. Автомобили с моторами такого типа могут передвигаться как на бензине, так и на водороде.

Еще более широкого распространения получило применение водорода в качестве компонента топливно-воздушной смеси. Для работы ДВС используется обычное топливо и небольшая часть гремучего газа. Это позволяет повысить степень сжатия, и уменьшить токсичность выхлопных газов.

Одним из возможных путей развития двигателей на водороде является применение силовых установок с топливными элементами. Во время химической реакции водорода и кислорода выделяется энергия, которая используется для питания электродвигателей автомобиля.

Трудности эксплуатации водородных ДВС

Главное препятствие на пути внедрения технологии – это стоимость получения водорода (Н2), а также комплектующих для его хранения и транспортировки. К примеру, для сохранения сжиженного состояния нужно поддерживать стабильную температуру -253º С. Наиболее доступный способ получения Н2 – это электролиз воды. Промышленное снабжение водородом требует больших энергетических затрат. Рентабельным этот процесс сможет сделать ядерная энергетика, которой также пытаются найти рациональную альтернативу. Транспортировка и хранение газа требуют использования дорогостоящих материалов и высококачественных механизмов. К другим недостаткам водородного топлива можно отнести:

  • взрывоопасность. В замкнутом пространстве достаточная для реакции концентрация гремучего газа может спровоцировать взрыв. Усугубить ситуацию способна высокая температура воздуха. Из-за высокой степени диффузности водорода существует риск попадания Н2 в выхлопной коллектор, где реакция с горячими выхлопными газами приведет к возгоранию смеси. Роторный двигатель, ввиду особенностей компоновки, является более предпочтительным для водородного автомобиля;
  • для хранения водорода требуется емкость большого объема, а также специальные системы, препятствующие улетучиванию Н2 и обеспечивающие защиту от механических деформаций. Если для автобусов, грузовиков либо водного транспорта такая особенность не играет большой роли, то легковые автомобили теряют ценные кубометры багажного отделения;
  • в режимах высокотемпературных нагрузок водород способен провоцировать разрушительное воздействие на детали цилиндропоршневой группы и моторное масло. Применение соответствующих сплавов и смазочных материалов ведет к удорожанию производства и эксплуатации двигателей, работающих на водороде.

Перспективы развития

Автомобилестроение – далеко не единственная область, где могут применяться водородные двигатели. Водный, железнодорожный транспорт, авиация, а также различная вспомогательная спецтехника могут использовать силовые установки подобного типа.

Интерес к внедрению технологии водородных двигателей проявляют как дочерние предприятия, так и крупные автоконцерны (BMW, Volskwagen, Toyota, GM, Daimler AG и прочие). Уже сейчас на дорогах можно встретить не только опытные образцы, но и полноценные представители модельного ряда, приводимые в движение с помощью водорода. BMW 750i Hydrogen, Honda FSX, Toyota Mirai и многие другие модели отлично зарекомендовали себя во время дорожных испытаний. К сожалению, высокая стоимость водорода, отсутствие инфраструктуры заправочных станций, а также достаточного количества квалифицированных сотрудников, оборудования для ремонта и обслуживания не позволяют запустить такие автомобили в массовое производство. Оптимизация всего цикла использования гремучего газа являются первоначальной задачей области развития водородной энергетики.

К сожалению, природные ресурсы нашей планеты не являются безграничными. И хотя запасов нефти, являющейся сырьём для производства автомобильного топлива, хватит не на одну сотню лет, неуклонно растущая цена чёрного золота принуждает производителей уже сегодня подыскивать альтернативные источники питания.

Кроме того, к этому приводит необходимость заботы о чистоте окружающей среды. Хотя в большинстве современных транспортных средствах изготовителями предусмотрена тщательная очистка выхлопных газов, полностью уберечь экологию от их негативного воздействия пока не удаётся

Одним из наиболее перспективных вариантов альтернативных источников энергии для автомобилей считается инновационная разработка конструкторского бюро концерна Тойота. Существует ли возможность самостоятельно изготовить водородный двигатель? Попробуем разобраться, предварительно ознакомившись с устройством и принципом действия силового агрегата, предназначенного для машин грядущего поколения.

Водородный двигатель - достойный преемник моторов на традиционном топливе. Рекомендации по самостоятельному изготовлению

Мастерство отечественных умельцев всегда поражало и вызывало неприкрытую зависть автолюбителей всего мира. Стремление избежать лишних расходов принуждает доморощенных механиков совершенствовать личные средства передвижения своими руками. Водородный двигатель не является исключением. Российские автолюбители научились изготавливать его самостоятельно.

Чтобы лучше разобраться во всех тонкостях этого процесса, предварительно следует ознакомиться с устройством силового агрегата, которому, несомненно, принадлежит будущее моторостроения. Также необходимо досконально изучить принцип работы подобного устройства.

Разновидности водородных двигателей

Современная наука не стоит на месте, постоянно находясь в поисках новых решений. Однако реального воплощения в жизнь удостаиваются только самые перспективные из них. Разработки, не обладающие достаточно высокой рентабельностью вкупе с приемлемыми показателями производительности, отметаются сразу. На сегодняшний день известно два вида силовых агрегатов, работающих на водороде:

  1. моторы, в качестве источника питания которых используются топливные элементы. Рядовому обывателю, к сожалению, установить подобный водородный двигатель на свой автомобиль не представляется возможным. Объяснением такой весьма печальной для водителей среднего достатка действительности является довольно ощутимая стоимость комплектующих деталей, составляющих его конструкцию. Некоторые из них изготавливаются из драгоценных материалов, в частности из платины;
  2. второй разновидностью считается водородный двигатель внутреннего сгорания. Его принцип действия аналогичен силовым установкам, работающим на пропане. Поэтому часто газовые агрегаты подвергают определённой перенастройке, приспосабливая к использованию водорода. Несмотря на то, что КПД таких моторов значительно ниже устройств, функционирующих на топливных элементах, многих автолюбителей привлекает их доступная стоимость и возможность самостоятельного изготовления.

Следует отметить, что учёные не остановились на изобретении этих двух типов водородных двигателей. В настоящее время проводятся изыскания по их усовершенствованию. Поэтому невозможно с уверенностью утверждать, какому из них принадлежит будущее.

Принцип действия водородных силовых установок

Чтобы любой мотор мог нормально работать, необходимо его обеспечить надёжным источником питания. Водородный двигатель функционирует за счёт электролиза. С присутствием особого катализатора в воде под воздействием электрического тока образуется не обладающий взрывоопасными свойствами газ с названием гидроген. Его можно представить химической формулой ННО.

В конструкции силового агрегата предусмотрены специальные ёмкости, Они предназначены для соединения гидрогена с топливно-воздушной смесью.

Устройство генератора представлено электролизёром и резервуаром. Процесс образования гидрогена осуществляется при помощи модулятора тока. Водородные двигатели инжекторного типа дополнительно комплектуются особым оптимизатором. Основным предназначением данного приспособления является обеспечение требуемого соотношения гидрогена и топливно-воздушной смеси. С его помощью происходит регулирование процесса для создания идеальных пропорций.

Разновидности катализаторов

Рекомендации по созданию водородного двигателя своими руками

В обычных условиях выделить гидроген из воды практически невозможно. Для успешного протекания процесса необходимо использование специальных катализаторов. На сегодняшний день применяются такие их разновидности:

  1. достаточно простая конструкция, управляемая весьма примитивным механизмом, выполняется в виде цилиндрических банок. К сожалению, элементарное устройство данного катализатора негативно отразилось на производительности водородного двигателя. Её максимальная величина характеризуется показателем 0,7 л газа, выделяемого за одну минуту. Такой вид катализатора подходит для ДВС на водороде с небольшой ёмкостью, а именно до 1,5 литров. Увеличение количества банок способствует возможности эксплуатации силового агрегата большего объёма;
  2. наилучшей эффективностью обладает катализатор, представленный обособленными ячейками. Такая система характеризуется максимальным коэффициентом полезного действия;
  3. на долгосрочную эксплуатацию рассчитаны открытые пластины или сухой катализатор. Благодаря свободному доступу воздуха из окружающей среды создаётся возможность наиболее эффективного охлаждения. Из перечисленных разновидностей система имеет средний показатель производительности, выражающийся величиной, колеблющейся в пределах 1-2 л газа, выделяемого из воды на протяжении одной минуты.

Конструкторские бюро и исследовательские институты не прекращают изыскания по разработке водородных двигателей, обладающих приемлемой производительностью при максимальном КПД. Уже сегодня практикуется применение гибридных устройств, в которых успешно сочетаются различные источники питания. Оптимальной считается комбинация водорода с бензином. Также учёные продолжают поиски идеального катализатора, способного обеспечить наибольшую производительность.

Формирование водородного агрегата

Для начала надлежит обеспечить устройство трубопровода с добавочными ёмкостями Датчик уровня жидкости, закреплённый в центре крышки, препятствует ложному срабатыванию во время движения вверх-вниз. Этим прибором управляется система автоматической подпитки.

Датчик давления регулирует подкачку воды, включая т отключая её при показателях соответственно 40 и 45 psi. При достижении нагрузки в 50 psi приводится в действие предохранитель, в конструкции которого предусмотрены две функционально значимые части:

  • вентиль аварийного сброса используется в экстремальных ситуациях;
  • разрывной диск, принцип работы которого заключается в активации при показателе давления в 60 psi, обеспечивая сохранность системы.

Особое внимание следует уделить качественному отводу тепла. Для этой цели подбирается наиболее холодная свеча.

Электрическая начинка

В качестве импульсного генератора, регулирующего продолжительность и частоту импульса, рекомендуется использовать таймер 555. В микросхеме двигателя на водороде должно быть два таких прибора. При этом конденсаторы первого из них обязаны обладать большей ёмкостью Включение второго генератора происходит с выхода третьей частоты первого таймера.

Резисторы на 220 и 820 Ом соединяются с третьим выходом второго прибора 555. Для получения силы тока требуемой величины используется транзистор. Его защита возложена на диод 1N4007, чем поддерживается нормальное функционирование всей системы.

Заключение

Вполне вероятно, в ближайшем будущем подавляющее большинство транспортных средств будет комплектоваться водородными двигателями. Поскольку кругооборот воды в природе сделал этот материал практически неистощимым, и процесс её добычи не вызывает никаких трудностей, экономия становится очевидной.

Помимо того, главными преимуществами таких агрегатов считаются сокращение потребления бензина и сохранность окружающей среды благодаря абсолютной экологической безопасности.

Несмотря на то, что характеристики самодельного мотора, использующего водородное топливо в качестве источника питания, несколько уступают заводским моделям, отечественные умельцы могут по праву гордиться собственноручным творением.

03.02.2016

Ресурсы нашей планеты не бесконечны, в том числе и запасы «черного золота» (нефти). Несмотря на снижение мировых цен и наличие определенных запасов, осознание важности альтернатив не покидает головы многих умов человечества. Пройдут годы, и мир столкнется с нехваткой энергоресурсов.


Но будущий дефицит нефти - не единственная причина поиска новых вариантов. Люди начали думать о будущем нашей планеты и сохранении окружающей среды. На этом фоне и начались разработки водородных двигателей - устройств, способных работать на неисчерпаемом, доступном и безопасном топливе.




Суть проблемы

Одна из главных проблем - конечно, выбросы в атмосферу. В 2015 году источники около трети всех выбросов CO2 - транспортные средства (в первую очередь автомобили). По результатам исследований к 2050 году выбросы углекислого газа будут только расти (вместе с увеличением автопарка).


Кроме CO2, есть и еще одна проблема - окиси азота, которые негативным образом сказываются на здоровье и приводят к различным проблемам с дыхательной системой людей. Ученым уже удалось доказать, что одной из причин астмы является именно окись азота.


Немаловажная проблема - рост цен на энергоносители. Как показала практика, повышение или снижение цены на нефть не сильно сказывается на стоимости топлива. Бензин (солярка) есть и будут дорогими. Цена если и будет падать, то лишь в незначительной степени. На данном фоне необходим поиск альтернативы, способной подарить независимость в энергетической сфере.




История

Почти половина добываемой в мире нефти идет на производства топлива для машин. Водород в качестве замены классическому «черному золоту» рассматривается уже давно. Причина проста - запасов данного вещества на планете достаточно, чтобы тысячелетиями «кормить планету». Кроме этого, водород несложно выделить из воды, поэтому с поиском ресурсов проблем нет. Единственная сложность - перевозка и хранение, но и данные вопросы уже решаются.


Первая установка, работающая на водороде, появилась в 1841 году (речь идет о запатентованной версии). Уже через 11 лет в Германии удалось построить ДВС, который мог работать на смеси двух элементов - водорода и воздуха. На известном миру дирижабле Гиндебург стоял мотор, работающий на светильном газе (в его составе было половина водорода). Но после трагедии с дирижаблем в 1937 году и гибели 37 человек интерес к водороду, как топливу, временно был утерян.


Но уже в 70-х годах 19 века разработчики снова вернулись к созданию водородного двигателя. На современном этапе важность усовершенствования и активного внедрения таких технологий обсуждается на самом высоком уровне. Популярность обусловлена и ростом цен на нефтепродукты, что заставляет многие страны искать реальные и доступные альтернативы.


Идею создания водородного двигателя не только подхватили, но и внедрили в жизнь такие популярные производители, как Хонда Моторз, Дженерал Моторз, Форд, БМВ и прочие.




Виды водородных авто

Если рассматривать существующие водородные авто, то среди них можно выделить три основные группы:


  • Транспортные средства с обычным мотором, способным работать на водороде или водородном составе. Данные типы авто универсальны, то есть способны ездить на чистом водороде или посредством применения водорода в качестве добавки к топливу. Особенность таких автомобилей - высокий уровень КПД (в случае смешивания с топливом почти на 15-20%). Второй позитивный момент - очищение выхлопа. В частности, снижение угарного газа и углеводов уменьшается почти на 50%, а оксидов азота - на 500%. Такие авто производятся как за границей, так и в странах СНГ. При этом первые транспортные средства появились приблизительно в 80-е годы прошлого века.


  • Машины с электрическим питанием. Такие транспортные средства называют «гибридами». Их особенность - приведение колес в движение с помощью электрического привода, питаемого АКБ. Особенность гибридного мотора - способность работать как на обычном водороде (чистой смеси), так и на смеси с классическим топливом. Первый вариант является более выгодным с позиции затрат и экономически обоснованным. Общий КПД у авто с электродвигателем может достигать 95%. В сравнении с ДВС и их 30-35% столь высокий параметр действительно поражает. Таким образом, переход на водород может повысить полезное действие мотора почти в три раза. Но и здесь не все идеально. Даже для АКБ и его заряда требуется топливо, поэтому вредные выхлопы все равно будут присутствовать. Чтобы убрать вредные пары полностью, был создан рассмотренный ниже тип водородного двигателя.


  • Водородный автомобиль, в котором установлен электрический двигатель, работающий от основного топлива. По теории такой узел способен работать от смеси водорода и воздуха. КПД устройства может достигать 85%. Но это в теории. На практике удалось добиться лишь 75%. В условиях городского цикла такое транспортное средство получает массу преимуществ перед обычными авто (в первую очередь, по отношению затрат на топливо).



Как это работает?

Схема работы авто на водороде выглядит следующим образом:


  • поршень перемещается сверху вниз, открывая при этом клапан выпуска;
  • давление в камере сгорания становится равным атмосферному;
  • при достижении поршнем нижней точки происходит герметизация камеры;
  • клапан выпуска закрывается, а через клапаны подачи топлива осуществляется впрыск топливной смеси (гремучего газа);
  • в процессе сгорания смеси давления в камере возрастает; этой силы достаточно, чтобы открыть установленные в ГБЦ обратные клапана и осуществить выброс продуктов горения;
  • давление снижается, что приводит к закрытию обратных клапанов и герметизации камеры сгорания;
  • действие созданного давления способствует перемещению поршня и его возврату в первоначальную точку;
  • как только поршень становится в верхней позиции, снова открываются клапана впуска и так далее.


Как следствие, принцип действия водородного мотора ничем не отличается от обычного ДВС. Разница лишь в применяемом топливе.


Что касается получения необходимого газа, то это может происходить несколькими путями. Один из них - посредством электролиза воды.


Описанная выше схема является простейшей, но она работает. При этом водород можно использовать и в обычном ДВС. Преимущество такой подмены - быстрое сгорание топлива и рост общей производительности автомобиля.


Пары жидкости рекомендуется добавлять в силовой узел уже к имеющемуся водородному топливу. После работы на водороде двигатель реально очищается от нагара и разных «напылений». Но есть и отрицательная сторона. Вместе с нагаром водород смывает и имеющуюся масляную пленку. Как следствие, может снизиться ресурс силового узла.


Чтобы перевести обычный двигатель на водородное топливо, стоит произвести переделку в машине выхлопной и клапанной системы. Кроме этого, необходимо заменить поршни, которые должны иметь керамическое покрытие. Если же сделать подобные переделки, то проблем со смазкой или ржавчиной точно не будет.




Преимущества и недостатки

Можно долго обсуждать все перспективы водородных двигателей, но первое, с чего всегда нужно начинать - изучение плюсов и минусов конструкции.




К плюсам водородных моторов можно отнести:


  • Высокий уровень экологичности - одно из главных преимуществ, которое до сих пор является главной движущей силой данного нововведения. Сам водород является по-настоящему экологичным видом топлива. В результате его сгорания возникает только вода. Это несложно увидеть на примере простой химической формулы - 2Н2+О2=2Н2О. Многие посчитают, что при езде на водородном авто из выхлопной трубы будет выливаться обычная вода (пар). Это не совсем так. Нельзя забывать, что в двигателе есть еще масло или антифриз, которые могут попасть в камеру сгорания, а далее - в выхлоп автомобиля. Но для ученых это не проблема - они уже работают над устранением недостатка. Возможно, в скором будущем горение масла не будет приводить к ухудшению качества выбросов, а появившуюся в результате горения воду можно было бы собрать посредством электролиза;


  • Есть возможность использовать сразу два вида топлива - бензин и водород. Единственное, что для этого необходимо - устанавливать две отдельные емкости. При желании можно выбрать тот вид топлива, который наиболее актуален в конкретный момент времени;


  • Высокий коэффициент полезного действия, который на 200% выше, чем у обычного ДВС и на 150% больше, чем у дизеля;



  • Специалисты сходятся во мнении, что уже через 30-40 лет водород полностью покроет все потребности в топливе;


  • Водород по всем показателям - идеальная смесь для применения в виде топлива. Он имеет неограниченные объемы, если в виде сырья рассматривать обычную воду.



Минусы водородного двигателя:


  • Для обеспечения должной работы водородного мотора нужны мощные аккумуляторы, общая масса которых может быть весьма серьезной. Как результат, общий вес транспортного средства становится больше;


  • Топливные элементы на водороде отличаются высокой ценой, что делает дороже и сам транспорт. Применение водородных элементов неизбежно приводит к повышению пожаро- и взрывоопасности;

Традиционный двигатель внутреннего сгорания (ДВС) имеет ряд существенных недостатков, что заставляет ученных искать ему достойную замену. Самым популярным вариантом подобной альтернативы является электродвигатель, однако он не единственный, кто может составить конкуренцию ДВС. В данной статье речь пойдет о водородном моторе, который по праву считается будущим автомобилестроения и может решить проблему с вредными выбросами и дороговизной топлива.

Краткая история

Несмотря на то, что сохранность окружающей среды только сейчас стала массовой проблемой, об изменении стандартного двигателя внутреннего сгорания ученые задумывались и раньше. Так, мотор, работающий на водороде, «увидел мир» еще в 1806 году, чему поспособствовал французский изобретатель Франсуа Исаак де Риваз (он производил водород при помощи электролиза воды).

Прошло несколько десятков лет, и в Англии выдали первый патент на водородный двигатель (1841 год), а в 1852 году немецкие ученые сконструировали ДВС, который мог работать на воздушно-водородной смеси.

Чуть позже, во времена блокады Ленинграда, когда бензин был дефицитным продуктом, а водород имелся в достаточно большом количестве, техник Борис Шелищ предложил использовать для работы заградительных аэростатов воздушно-водородную смесь. После этого на водородное питание перевели все ДВС лебедок аэростатов, а общее число работающих на водороде машин достигало 600 единиц.

В первой половине ХХ века интерес общественности к водородным двигателям был невелик, но с приходом топливно-энергетического кризиса 70-х годов ситуация резко изменилась. В частности, в 1879 году компания BMW выпустила первый автомобиль, который вполне успешно ездил на водороде (без взрывов и водяного пара, вырывающегося из выхлопной трубы).

Следом за BMW, в этом направлении начали работать другие крупные автопроизводители, и к концу прошлого столетия практически каждая уважающая себя автокомпания уже имела концепцию разработки машины на водородном топливе. Тем не менее, с окончанием нефтяного кризиса исчез и интерес общественности к альтернативным источникам топлива, хотя в наше время он снова начинает пробуждаться, подогреваемый защитниками экологии, борющимися за снижение токсичности выхлопных газов автомобилей.

Более того, цены на энергоносители и желание обрести топливную независимость только способствуют проведению теоретических и практических исследований ученными многих стран мира. Самыми активными являются компании BMW, General Motors, Honda Motor, Ford Motor.

Интересный факт! Водород – самый распространенный элемент во Вселенной, но найти его в чистом виде на нашей планете будет очень непросто.

Принцип работы и типы водородного двигателя

Основным отличием водородной установки от традиционных двигателей является способ подачи топливной жидкости и последующее воспламенением рабочей смеси. При этом принцип трансформации возвратно-поступательных движений кривошипно-шатунного механизма в полезную работу остается неизменным. Учитывая, что горение нефтяного топлива происходит достаточно медленно, топливно-воздушная смесь наполняет камеру сгорания раньше, чем поршень займет свое крайнее верхнее положение (так называемую верхнюю мертвую точку).

Стремительная реакция водорода дает возможность сдвинуть время впрыска ближе к тому моменту, когда поршень начинает возвращаться к нижней мертвой точке. Нужно отметить, что давление в топливной системе не обязательно будет высоким.

Если водородному двигателю создать идеальные рабочие условия, то он может иметь топливную систему питания закрытого типа, когда процесс смесеобразования будет проходить без участия атмосферных воздушных потоков. В таком случае после такта сжатия в камере сгорания остается водяной пар, который, проходя через радиатор, конденсируется и снова превращается в обычную воду.

Однако применение такого вида устройства возможно только тогда, когда на транспортном средстве имеется электролизер, отделяющий водород от воды для его повторной реакции с кислородом. На данный момент добиться таких результатов крайне сложно. Для стабильной работы двигателей применяется , а его испарения являются частью выхлопных газов.

Поэтому беспроблемный запуск силовой установки и ее устойчивая работа на гремучем газе без использования атмосферного воздуха – пока что неосуществимая задача. Различают два варианта автомобильных водородных установок: агрегаты, функционирующие на основе водородных топливных элементов, и водородные двигатели внутреннего сгорания.

Силовые установки на основе водородных топливных элементов

В основе принципа работы топливных элементов лежат физико-химические реакции. По сути, это те же свинцовые аккумуляторные батареи, вот только коэффициент полезного действия топливного элемента несколько выше, чем АКБ, и составляет около 45% (иногда больше).


В корпус водородно-кислородного топливного элемента помещена мембрана (проводит только протоны), разделяющая камеру с анодом и камеру с катодом. В камеру с анодом поступает водород, а в камеру катода – кислород. Каждый электрод заранее покрывают слоем катализатора, в роли которого нередко выступает платина. При его воздействии молекулярный водород начинает терять электроны.

В это же время протоны проходят через мембрану к катоду и под влиянием того же катализатора соединяются с электронами, поступающими снаружи. В результате реакции образуется вода, а электроны из камеры анода перемещаются в электроцепь, подсоединенную к мотору. Проще говоря, мы получаем электрический ток, который и питает двигатель.

Водородные двигатели на основе топливных элементов сегодня используются на автомобилях «Нива», оснащенных энергоустановкой «Антэл-1», и машинах «Лада 111» с агрегатом «Антел-2», которые были разработаны уральскими инженерами. В первом случае одного заряда хватает на 200 км, а во втором – на 350 км.

Следует отметить, что из-за дороговизны металлов (палладия и платины), входящих в конструкцию таких водородных двигателей, подобные установки имеют очень большую стоимость, что существенно увеличивает и цену транспортного средства, на котором они установлены.

А знаете ли вы? Специалисты компании Toyota начали работать с технологией топливных элементов еще 20 лет назад. Примерно тогда стартовал и проект гибридного автомобиля Prius.

Водородные двигатели внутреннего сгорания

Данный тип силовых установок очень похож на распространенные сегодня моторы на пропане, поэтому, чтобы перейти с пропана на водородное топливо, достаточно просто перенастроить двигатель. Уже существует немало примеров подобного перехода, но нужно сказать, что в этом случае КПД будет несколько ниже, чем при использовании топливных элементов. В то же время, для получения 1 кВт энергии водорода потребуется меньше, что вполне компенсирует данный недостаток.

Использование этого вещества в обычном моторе внутреннего сгорания вызовет целый ряд проблем. Во-первых , высокая температура сжатия «заставит» водород вступить в реакцию с металлическими элементами двигателя или даже моторным маслом. Во-вторых , даже небольшая утечка при контакте с раскаленным выпускным коллектором точно приведет к возгоранию.

По этой причине для создания водородных конструкций используются только силовые агрегаты роторного типа, так как их конструкция позволяет уменьшить риск возгорания за счет расстояния между впускным и выпускным коллектором. В любом случае, все проблемы пока удается обходить, что позволяет считать водород достаточно перспективным топливом.

Хорошим примером транспортного средства с водородной установкой может послужить экспериментальный седан BMW 750hL, концепт которого был представлен еще в начале 2000-х годов. Автомобиль оснащен двенадцатицилиндровым мотором, работающим на основе ракетного топлива и позволяющим разогнать машину до 140 км/час. Водород в жидкой форме хранится в специальном баке, и одного его запаса хватает на 300 километров пробега. Если же он полностью расходуется, система автоматически переключается на бензиновое питание.

Водородный двигатель на современном рынке

Последние исследования ученых в области эксплуатации водородных двигателей показали, что они не только очень экологичны (как электродвигатели), но могут быть очень эффективными в плане производительности. Более того, по техническим показателям водородные силовые установки обходят своих электрических собратьев, что уже было доказано (к примеру, Honda Clarity).

Также следует отметить, что, в отличие от систем Tesla Powerwall, водородные аналоги имеют один существенный недостаток: зарядить аккумулятор при помощи солнечной энергии уже не получится, а вместо этого придется искать специальную заправочную станцию, которых на сегодняшний день даже в мировом масштабе насчитывается не так уж и много.

Сейчас Honda Clarity выпущен достаточно ограниченной партией, и приобрести автомобиль можно только в Стране восходящего солнца, так как в Европе и Америке транспортное средство появится только в конце 2016 года.

Интересно знать! Генератор Power Exporter 9000 (может входить в комплектацию Honda Clarity) способен питать всю домашнюю технику почти целую неделю.

Также в наше время выпускаются и другие транспортные средства, использующие водородное топливо. К ним относятся Mazda RX-8 hydrogen и BMW Hydrogen 7 (гибриды, работающие на жидком водороде и бензине), а также автобусы Ford E-450 и MAN Lion City Bus.

Среди легковых автомобилей самыми заметными представителями водородных транспортных средств на сегодня являются автомобили Mercedes-Benz GLC F-Cell (есть возможность подзарядки от обычной бытовой сети, а суммарный запас хода составляет около 500 км), Toyota Mirai (работает только на водороде, и одной заправки должно хватать на 650 км пути) и Honda FCX Clarity (заявленный запас хода достигает 700 км). Но и это еще не все, ведь автотранспорт на водородном топливе выпускается и другими компаниями, например, Hyundai (Tucson FCEV).

Плюсы и основные недостатки водородных двигателей

При всех своих преимуществах, нельзя сказать, что водородный транспорт лишен определенных недостатков. В частности, необходимо понимать, что горючая форма водорода при комнатной температуре и нормальном давлении представлена в виде газа, что вызывает определенные трудности в хранении и транспортировке такого топлива. То есть существует серьезная проблема конструирования безопасных резервуаров для водорода, применяющегося в качестве топлива для автомобилей.

Кроме того, баллоны с этим веществом требуют периодической проверки и сертификации, которые могут выполняться только квалифицированными специалистами, имеющими соответствующую лицензию. Также к этим проблемам стоит добавить и дороговизну обслуживания водородного мотора, не говоря уже об очень ограниченном количестве заправочных станций (по крайней мере, в нашей стране).

Не стоит забывать и о том, что водородная установка увеличивает вес автомобиля, из-за чего он может оказаться не столь маневренным, как вам бы того хотелось. Поэтому, учитывая все вышесказанное, хорошенько подумайте: стоит ли приобретать водородное транспортное средство, или пока с этим лучше повременить.

Однако нужно сказать, что и преимуществ в подобном решении немало. Во-первых , ваш автомобиль не будет загрязнять окружающую среду токсичными выхлопными газами, во-вторых , массовое производство водорода может помочь решить проблему резко меняющихся цен на топливо и перебоев в поставках обычных видов топливных жидкостей.

К тому же, во многих странах уже построены сети трубопроводов для метана, и их несложно адаптировать для прокачки водорода с последующей доставкой к заправкам. Производить водород можно как в малых масштабах, то есть на местном уровне, так и массово – на крупных, централизованных предприятиях. Рост производства водорода послужит дополнительным стимулом для роста поставок этого вещества в бытовых целях (например, для отопления домов и офисов).

Подписывайтесь на наши ленты в

Originally posted by zilm at Почему мы никогда не будем ездить на водородных автомобилях

Недавно Toyota объявила о том, что передаёт все свои патенты , связанные с автомобилями на топливных элементах в публичное пространство, и теперь они доступны для использования совершенно бесплатно. Новость умиляет тем, что патентов набралось аж 5 680 штук, задумайтесь только, как старались корпоративные юристы, патентуя всё вплоть до округлостей на кнопках. Но дело не только в этом, ведь в прошлом году именно Tesla стала первой, кто в мире патентных троллей и бесконечных судов открыл свои патенты . К слову, их у компании, выпускающей самый известный электромобиль, было меньше трёх сотен.


Toyota Mirai - первый в мире автомобиль на водородных топливных
элементах, который можно будет купить, а не взять в лизинг.

Но я хочу поговорить не столько об этом событии, сколько о том, почему даже появление первого автомобиля на топливных элементах, который можно купить, ничего не меняет для водородных автомобилей, и почему эта ветвь развития является абсолютно тупиковый. Илон Маск, CEO Tesla Motors, называет топливные элементы (fuel cells) "fool cells" (элементы одурачивания), аккумуляторные эксперты сходятся в том, что все в индустрии знают, что топливные элементы это ерунда, просто не все признают это, я же сосредоточусь на фактах.



Из-за падения цен на нефть стоимость галлона (3.76 литра) бензина в США упала
до $2, но даже во время дорогой нефти цена не поднималась выше $4.

1. Водород дорог.
Это просто факт. Сейчас рыночная цена на газ - $8.96 за эквивалент галлона бензина, 0.997 кг (данные за октябрь 2014 г.). Бак Toyota Mirai вмещает 5 кг водорода. Таким образом, одна заправка обошлась бы вам в $45 и её хватило на 480 км по методике тестирования EPA (данные ещё не проверены EPA, но вряд ли эта цифра окажется больше), что выливается в $9.38 за 100 км. Для сравнения, Toyota Prius проедет те же 100 км, потратив $2.76, а Tesla Model S - $2.99, если использовать ту же методику EPA и текущие средние американские цены.


К 2017 году Toyota планирует довести годовой выпуск Mirai до 2 100 штук.
Хотя существует множество оценок , предполагающих, что при больших объемах производства стоимость водорода снизится до $3 за кг (и приблизится к текущей цене на бензин), даже сама Toyota менее оптимистична в своих прогнозах: стоимость бака для Mirai снизится до $30 в будущем . Сейчас в США производится 7.31 миллионов кг ворода в день, в год около 2 600 миллионов килограмм. При среднегодовом пробеге около 21 500 км , его бы хватило для 12 миллионов автомобилей, то есть даже если бы водородных автомобилей в США продавали 10% от всех новых авто в течении 10 лет, производство лишь удвоилось, что не дало бы такого радикального снижения цены.


Предприятие по паровой конверсии природного газа в водород.
2. Производство водорода "грязнее" электрогенерации
Сейчас 95% водорода производится из углеводородов с помощью реакции паровой конверсии или частичного окисления. Остаётся от природного газа или углеводородов CO 2 , тот самый с которым все страны дружно борятся развитием альтернативной энергетики и альтернативных автомобилей. Если вспомнить, что в Европе и Азии, в отличие от США, нет своего природного газа, для того чтобы из него делать водород, то всё становится ещё печальней. Сейчас использование водорода ставит в прямую зависимость от цены на газ, что не сильно отличается от нефтяной зависимости, электричество же генерируется из десятка различных источников. Теоретически, водород можно получать электролизом, но сейчас такой газ для США будет в 3 раза дороже получаемого из метана. Более того, так как получение электричества не экологически чистый процесс, а конверсия электричества в водород, затем обратно из водорода в электричество в топливных элементах имеет низкий суммарный КПД, выбросы будут значительно выше, чем для электромобилей.


Реакция паровой конверсии метана: в качестве
побочного продукта выделяется пресловутый CO 2

Для получения одного килограмма водорода требует 52.5 кВтч на электролизере с 75% эффективностью . Таким образом, Toyota Mirai, используя водород, полученный с помощью электролиза будет тратить 54,69 кВтч на 100 км. Даже огромная, более чем 2-х тонная Model S потребляет 23.75 кВтч на 100 км, а Mirai заметно меньше и не может похвастаться разгоном до сотни за 4 секунды. Добавьте к этому транспортировку водорода, компрессию, строительство электролизеров, строительство водородных заправок и станет понятно, что даже теоретически это не путь по уменьшению вредных выбросов в атмосферу.


Водородная заправочная станция стоит $2 млн. и
способна заправить лишь 30 автомобилей за сутки.

3. Водородная инфраструктура очень дорога и не развита.
Одна водородная заправочная станция обходится в $2 миллиона . Калифорния уже потратила $100 миллионов на водородные заправочные станции. Высокую цену станции подтверждают и европейские источники, например только господдержка на одну станцию в Великобритании составляет £1 млн. Вы думаете, зато такая станция может обслужить сотни машин? Нет, станции рассчитаны на заправку максимум 30 автомобилей в день . С одной стороны больше и не надо, откуда там взяться хотя бы двум, но с другой стороны суперзарядка Tesla Motors на 6-12 стоек обходится компании в $100k - $150k, а более продвинутая версия с солнечными батареями на крыше и аккумуляторами на 500кВтч для сохранения солнечной энергии в "целых" $300k. Надо ли добавлять, что такая станция в действительности может обслужить больше сотни машин в день.


Всего за год без какой-то государственной помощи Tesla Motors сделала
возможными дальние поездки на Model S по Западной Европе.

Сейчас в США 13 водородных заправочных станций . В 2015 году планируют открыть ещё пару десятков. Я думаю, не ошибусь, если скажу, что эти планы следуют за водородными автомобилями на протяжении последних 10 лет. Правда, одна лишь компания Tesla Motors, используя часть прибыли от продажи своих электромобилей без государственных грантов, за один месяц, декабрь 2014 года открыла 54 своих суперзарядки, 12 из них в США, каждая на 6-8 зарядочных стоек. За год в Европе открыто более 120 суперзарядок, такое же количество водородных станций обошлось бы в четверть миллиарда долларов.


Водородный Hyundai Tucson стоит $144 400, и даже такая высокая
цена не означает, что он не субсидируется производителем.

4. Водородные автомобили дороги.
Хотя Toyota Mirai будет продаваться на американском рынке за $62 000, большинство экспертов сходится во мнении, что эта цена субсидирована производителем ( , ) Точных цифр от самой Тойоты нет, косвенно же это подтверждается высказыванием главы R&D компании о том, что автомобили на топливных элементах смогуть быть конкурентными по цене с электромобилями к 2030 году и стоимостью топливных элементов . Субсидирование производителем подтверждает и цена в $144 400 Hyundai Tucson на топливных элементах, продающийся в Южной Коррее. Но даже после такой большой субсидии со стороны производителя, покупатели не торопятся покупать автомобили на топливных ячейках.


Баки из углепластика со сжатым под давлением 680 атмосфер
водородом располагаются под днищем Toyota Mirai.

5. Нет ни одного преимущества водородных автомобилей перед электромобилями.
Большую часть недостатков я уже перечислил. Оставлю за бортом безопасность: хотя я бы побоялся ездить на двух баллонах с водородом под днищем, производитель утверждает, что это безопасно, так давайте поверим ему. Попробуем найти хоть какие-то преимущества автомобилей на водороде перед электромобилями. Запас хода? У Toyota Mirai - 480 км, у Tesla Model S - 424 км, Tesla Roadster после обновления в следующем году сможет проехать почти 640 км, все цифры по одной и той же методике тестирования EPA, "яблоки с яблоками", что называется. А есть же ещё и плагин-гибриды, которые дают симбиоз экономичности электромобилей с возможностью движения на обычном топливе на дальние расстояния. В общем, запас хода после появление Tesla уже не аргумент.


Tesla Model S P85D разгоняется от 0 до 100 км/ч за 3.3 секунды, в то время как
водородные автомобили довольствуются лишь динамикой самых слабых "дизелей".

Динамика? Разгон Toyota Mirai (от $62 000 в США) около 10 секунд до сотни, электромобиль BMW i3 (от $42 000 в США) набирает ту же скорость за шесть с половиной секунд , a Model S P85D разгоняется до сотни как McLaren F1. Остаётся единственное преимущество - скорость заправки за 3 минуты. Это могло бы быть козырем, если когда-нибудь водородных заправок стало как бензиновых. До этого момента преимущество у электромобилей - постоянная зарядка дома или на работе обеспечивает полностью заряженный автомобиль без необходимости куда-то специально заезжать. А быстрая зарядка даёт возможность полностью зарядиться за время обеда с семьёй при поездках на дальние расстояни. Если же спор идёт за абсолютные цифры, быстрая замена батареи позволяет через 1,5 минуты продолжить движение с "полным баком".


Honda тоже планирует выпустить автомобиль на топливных элементах
в конце 2015 года, правда пока он больше похож на концепт.

Резонно возникает вопрос: а зачем тогда это всё Toyota и другим компаниям. Тут надо уточнить, что кроме японского гиганта интерес к автомобилям на топливных элементах в разное время возникал лишь у Honda, Hyundai и немцев (Audi, VW, Mercedes, BMW). Остальные автомобильные производители были к ним равнодушны. В то же время и от этих компаний всё чаще слышится снижение интереса ( , BMW , Hyundai) к автомобилям на топливных ячейках. Итак,


Сомневаюсь, что недавно представленный
водородный концепт Mercedes F 015 вообще ездит.

Зачем автомобильные компании продолжают делать водородные автомобили?
а) Диверсификация
Разработка и создание рабочего прототипа может стоить всего $1 млн. Создание концепта для автосалона ещё проще - он не обязан ездить. Для компаний с десятками миллиардов долларов оборота - это просто капля в море. А вдруг стрельнет, а вдруг именно эта технология окажется перспективной через 5 лет.

б) Сотрудничество между компаниями
Honda и BMW активно сотрудничают с Toyota и было бы в каких-то случаях не этично и не дальновидно не поддерживать её.


Электрический Fiat 500e продаётся лишь в Калифорнии, США для соответствия
экологическому законодательству. В Европе об этой машине никто не слышал.

в) Соответствие экологическим требованиям
Экологические требования в развитых странах ужесточаются каждый год. Например, для Калифорнии несколько производителей выпускает электромобили только для того, чтобы соответствовать . Сейчас законодательство изменилось так, что выпустить один автомобиль на водородных топливных элементах стало выгоднее в 5 раз, чем электромобиль. Добавьте сюда поддержку установки заправочной инфраструктуры постоянными грантами и вы получите готовый рецепт существования автомобилей не нужных самим производителям.


За 15 лет все автомобили Toyota получили гибридные версии.
г) Маркетинг
15 лет назад Toyota создала уникальный для того времени автомобиль, гибрид Toyota Prius. Вначале его производство было даже убыточным для компании, но позже продажи увеличились, себестоимость снижалась, и сейчас слово гибрид и экономичность для всех ассоциируется, главным образом, с Toyota. Продажи гибридных автомобилей составляют приличную долю доходов компании и спустя 15 лет стали высокомаржинальными. И тут появляются электромобили и плагин-гибриды. В этом сегменте конкуренция быстро нарастает, хотя доля продаж ещё заметно меньше, чем у обычных гибридов. В то же время доля обычных гибридов начинает падать, а электромобили и плагин-гибриды растут каждый год. При этом у Toyota нет никаких серьёзных наработок в этом сегменте.

Что надо сделать? Правильно, нужно сделать "poker face", говорить, что всё это ерунда, и дальше продавать Prius-ы

Понравилось? Лайкни нас на Facebook