Усовершенствование двигателя с помощью электрического нагнетателя воздуха. Воздушные нагнетатели

На заре автомобилестроения инженеры решали вопрос увеличения мощности двигателей внутреннего сгорания, что называется, в лоб – увеличивали количество и размеры цилиндров. Однако практичность таких разработок даже во времена дешевой нефти была под большим вопросом. Нагнетатель воздуха позволил решить эту проблему своими руками.

1 Турбонагнетатели – с чем столкнулись инженеры?

Сложно это представить, но еще в 1909 году автомобиль с двигателем внутреннего сгорания установил рекорд скорости в 200 км/ч – достижение для тех времен невероятное. Еще сложнее представить объем двигателя, благодаря которому удалось разогнать авто до такой скорости – 28 литров! Даже речи быть не могло, чтобы запустить такие агрегаты в массовое производство, ведь их обслуживание своими руками было практически невозможным, ввиду огромных габаритов двигателя.

К счастью, дальнейшие разработки автомобильных инженеров велись в сторону уменьшения объема при сохранении мощностей, а также упрощения конструкции. Чтобы автомобиль стал массовым, следует дать возможность ремонтировать его своими руками – так размышляли первые автомобилестроители и были совершенно правы.

Благодаря появлению нагнетателя, удалось при сохранении всех параметров сходу увеличить мощность на целых 50 %! Сегодня опытному автомобилисту не составит труда своими руками установить одну из популярных систем турборежима.

Представить принцип работы такого устройства совершенно не сложно даже школьнику младших классов. Работу мотора обеспечивает постоянное сгорание топливно-воздушной смеси, которая поступает в цилиндры двигателя. В зависимости от возможностей двигателя и режимов его работы устанавливается оптимальное соотношение воздуха и топлива. В обычных условиях объем ТВС ограничен размерами цилиндра – внутрь камеры смесь попадает благодаря разрежению на такте впуска.

Нагнетатель воздуха позволяет подать внутрь цилиндра на впуске больше топливно-воздушной смеси. Больше ТВС – больше энергии при сгорании, больше мощность агрегата. Казалось бы, все просто, как дважды два, однако без нюансов не обошлось. Увеличение мощности двигателя таким способом повлекло целый ряд проблем. Главная из них – возрастание количества тепловой энергии при сгорании смеси, что в свою очередь влечет быстрое прогорание поршней, клапанов, поломку системы охлаждения. И далеко не всегда последствия удается ликвидировать своими руками.

Кроме того, с увеличением объема ТВС увеличивается и шанс детонации двигателя в буквальном смысле этого слова. Даже без детонации преждевременный износ агрегата гарантирован. Чтобы уменьшить негативные последствия для автомобиля (избежать их полностью не удается), принято использовать высокооктановое топливо, а также декомпрессию. В первом случае приходится своими руками платить немалые деньги, а во втором существенно снижается мощность.

2 Нагнетатель воздуха – как влить силы в двигатель?

С развитием автомобилестроения возникали и различные способы компрессии воздуха. Многие разработки уверенно дошли и до наших дней. Итак, разберемся, какие способы наддува существуют:

  1. Механический – "отец" нагнетателей, возникший практически сразу же после появления ДВЗ. В действие такой наддув приводится коленвалом мотора.
  2. Электрический – более современный вариант турбонаддува, в котором излишнее давление в цилиндрах создает электрический компрессор.
  3. Турбонаддув – нагнетатель в такой системе работает от давления выхлопных газов и компрессора.
  4. Комбинированный наддув – совмещение различных систем, чаще всего механической и турбо.


Как правило, такие системы серийно на автомобили не устанавливаются, что дает автолюбителям множество возможностей для тюнинга своими руками.

3 Механический турбонагнетатель воздуха – своими руками совершенствуем авто!

Наиболее эффективен режим турбо на впрысковых бензиновых двигателях. Моторы карбюраторного типа также могут работать с механическим нагнетателем, однако им необходима определенная доработка своими руками, в частности, установка жиклеров с увеличенным сечением и другие меры. В случае с инжекторным двигателем все сводится к новой прошивке.

Механический нагнетатель, работающий от коленвала двигателя, имеет несомненное достоинство – он работает абсолютно синхронно с агрегатом и в режиме турбо обеспечивает равномерную подачу воздуха в соответствии с оборотами мотора. Однако такое устройство будет отбирать для своей работы часть мощности движка.

Самыми распространенными вариантами построения механических нагнетателей, которые можно установить своими руками, являются три типа:

  • Центробежный аппарат – применяется как самостоятельно в виде компрессора, так и в комбинации с другими устройствами. Принцип работы достаточно прост – лопатки, вращающиеся на большой скорости, захватывают воздух и забрасывают внутрь корпуса, который имеет улиткообразную форму. На выходе из корпуса поток воздуха приобретает нужное для режима турбо давление. Невысокая стоимость устройства и возможность установки своими руками сделали его наиболее популярным. Однако в его работе хватает и сложностей, в частности, с техобслуживанием.
  • Нагнетатель ROOTS – представляет собой лопатки ротора, которые помещены в замкнутый корпус. Воздух захватывается на входе, за счет высокой скорости вращения лопаток воздух приобретает более высокое давление на выходе. Главный недостаток устройства такого типа – неравномерность подачи воздушного потока, что вызывает пульсацию давления в режиме турбо. Однако относительно тихая работа, надежность и компактность заставляют автомобилистов мириться даже с таким недостатком. При определенных навыках обращения с техникой вам не составит труда установить такой наддув своими руками.
  • Нагнетатель LYSHOLM – представитель винтового типа аппаратов. Принцип работы схож с предыдущим – поток воздуха создается роторами, которые вращаются на высокой скорости. Главное отличие этого типа нагнетателей – маленький зазор между винтами, что вызывает множество сложностей в проектировании и установке таких изделий. Встречаются они на автомобилях нечасто и стоят недешево. Устанавливать их своими руками не рекомендуется, лучше обращаться к специалистам по турбонаддуву.

4 Турбонагнетатель – универсальный наддув своими руками

Как для бензиновых, так и для дизельных двигателей возможно применение турбонагнетателя. Это устройство представляет собой комбинацию компрессора и турбины, которая использует давление выхлопных газов для работы. Последнее устройство создает ряд проблем – турбина должна выдерживать высокие температуры и огромную скорость вращения, а значит, материалы для ее изготовления должны быть сверхпрочными. Некоторую часть нагрузки с турбины снимает компрессор, что и позволяет комплексу в целом справляться со своей задачей.

Недостаток устройства заключается в некотором запаздывании режима турбо – необходимо время, чтобы после нажатия на педаль турбина раскрутилась до нужного количества оборотов.

Впрочем, современные агрегаты решают и эту проблему, в основном благодаря наличию дополнительных нагнетателей. В отличие от турбонагнетателя, никакого запаздывания после нажатия на педаль в случае с электрическим компрессором вы не почувствуете – устройство, которое чаще всего комбинируют с центробежной турбиной, начинает работать уже на малых и средних оборотах, а турбина подключается на высоких. Электрический нагнетатель воздуха достаточно прост в реализации – никаких сложных систем и устройств для его установки не потребуется, так что усовершенствовать авто своими руками с его помощью вполне осуществимо.

X Вам все еще кажется что диагностика авто это сложно?

Если вы читаете эти строки, значит у вас есть интерес сделать что-то самому в машине и реально сэкономить , потому что вам уже знакомо что:

  • СТО ломят большие деньги за простую компьютерную диагностику
  • Чтобы узнать ошибку надо ехать к специалистам
  • В сервисах работают простые гайковерты, а хорошего спеца не найти

И вы конечно устали выбрасывать деньги на ветер, а о том чтобы кататься по СТО постоянно не может быть и речи, тогда вам нужен простой АВТОСКАНЕР ROADGID S6 Pro, который подключается к любому авто и через обычный смартфон вы всегда найдете проблему, погасите CHECK и неплохо сэкономите!!!

Мы сами протестировали этот сканер на разных машинах и он показал отличные результаты, теперь мы его рекомендуем ВСЕМ! Чтобы вы не попались на китайскую подделку, мы публикуем тут ссылку на официальный сайт Автосканера.

Многие начали мне задавать вопрос о приводном компрессоре или нагнетателе воздуха. Ведь его реально можно поставить на наш родной ВАЗ. Сегодня я хочу рассказать про это устройство более подробно, а именно как он работает и можно ли его установить своими руками …


Вообще идея компрессоров стара как мир. Еще в 1900 годах предлагались такие устройства, чтобы увеличить мощность двигателя, по средствам нагнетания дополнительного воздуха в цилиндры. Давайте выведу небольшое определение.

Приводной компрессор (или нагнетатель) – это узел который устанавливается на двигатель автомобиля, создает дополнительное нагнетание воздуха в камеры сгорания, что при небольшой переделки впрыска топлива дает дополнительную мощность, иногда до 30%.


Если сказать простыми словами, что получается – чудес, как говорится не бывает, если хотите увеличить мощность значит нужно сжигать больше топлива, однако чтобы его эффективно окислять ему нужно больше кислорода. Если утрировать этим то и занимается компрессор. То есть вы увеличиваете подачу топлива, например — ставите новую , устанавливаете компрессор и получаете – мощность. Все просто.

ТУРБО – НЕ ТУРБО

Если кратко, то сейчас есть много конструктивных разновидностей компрессоров. Одни работают используя энергию отработанных газов (ТУРБО), другие — используя привод (НЕ ТУРБО). Именно про вторые мы сегодня и будем говорить. Кстати можете почитать по ссылке.


Если разобрать конструкцию таких узлов, то можно выявить определенное сходство строения. А именно такие компрессоры работают от привода, который не требует вмешательства в штатные системы двигателя, а именно в смазку и систему отработанных газов, что очень важно! Такая конструкция действительно очень проста – устанавливается прямая связь с «коленвалом», что позволяет отлично взаимодействовать двигателю и нагнетателю, при разгонах. То есть чем выше обороты, тем быстрее вращается «коленвал», а соответственно раскручивает нагнетатель! Благодаря такому взаимодействию практически нет такого явления как «турбояма». Также дополнительным плюсом можно отметить отсутствие работы при больших температурах, как у ТУРБО вариантов, а это значит, что ресурс намного увеличивается – ведь здесь не нужно остывать «турбине», то есть не обязательны « » или «бустконтроллеры», просто глушим машину и работа прекращается. Сайт autoflit.ru рекомендует действовать точно также. Кому интересно заходите.

Типы приводных компрессоров

Настало время поговорить про устройства именно «приводных версий». Сейчас различают всего три вида: — это роторные, винтовые и центробежные. Первые два варианта нагнетают воздух при помощи определенных цилиндрических роторов или «лопастей», последний работает как кулер, то есть нагнетает лопастями.

Роторные типы

Компрессоры, которые применяются достаточно широко. Основной плюс это средняя цена, большой строк службы, высокая частота подаваемого воздуха, плавность и стабильность работы, быстрый отклик на частоту вращения коленчатого вала.

Воздух в этой системе не сжимается, он как бы заходит внутрь, а дальше в двигатель его нагнетают лопасти, которые сделаны в виде ротора. Поэтому они получили название – компрессор с внешним сжатием. Минусом является то, что при повышении давления на впуске, падает КПД.

Строение чаще всего состоит из двух роторов, на впускном и выпускном окне, смотрим фото. Располагаются они поперечно.


Недостатками этой конструкции можно назвать:

1) КПД зависит от зазоров между валами и другими деталями.

2) Самый большой нагрев из всех других типов.

3) Сильный шум и вибрацию валов.

4) Не особо сильное давление около 0,7 бара максимум.

Если подвести итог становится понятно, что этот тип далек от идеала. Некоторые могут задать вопрос — а почему лопасти винтовые? Тут есть две причины, первая это повышения давления воздуха и вторая уменьшения шума (хотя помогает мало).

Винтовой тип

Это более совершенная и надежная конструкция нагнетателя. Принцип работы здесь также прост – сжатие происходит за счет изменения объема полостей между корпусом и винтами вращения (своеобразными роторами). Воздух здесь движется диагонально. Большими плюсами этого варианта является высокое КПД до 85%, а также большое давление воздуха (от 1 бара в выше), достигается это большими оборотами иногда до 12 000 об. Именно из-за этого можно сделать корпус более миниатюрным. Нужно сказать этот вариант из-за надежности и небольшого корпуса часто используется на гоночных автомобилях.


Минусами можно назвать только сложное строение и ремонт, что увеличивает цену конечного продукта. Если такой приводной компрессор выходит из строя, то нужно ремонтировать на специализированых станциях, желательно производителя.

Как видно на конструкции два ротора, с зубчатыми спиральными зубьями. Их профили полностью соответствуют друг другу при соприкосновении, что делает конструкцию очень надежной.

Самые распространенные на двигателях внутреннего сгорания, работают при помощи так называемых лопастей или «лопаток». Если сравнить их двумя предыдущими, то этот тип самый компактный из всех, а также он прост в технологии изготовления, что удешевляет его конечную стоимость. Зачастую его могут путать с ТУРБО вариантом (который работает от выхлопных газов), из-за схожей конструкции, однако это совсем неправильно, это два совершенно разных устройства.

Принцип строения – состоит из входной части, рабочей (лопасти-лопатки) и диффузора, который может быть как лопаточный, так безлопаточный. Обязателен, для установки и воздухозаборник, сделанный в виде «улитки».


Воздух пройдя через специальный фильтр (кстати, также обязателен, иначе вся пыль будет внутри двигателя), попадает в специальный вход которое постепенно сужается (для минимальных потерь воздуха при подводе), далее следует к колесу. Рабочее же колесо устанавливается на специальном креплении, однако бывали случаи, когда размещалось и на самом валу. Далее через механическую передачу (привод), связывается с коленвалом.

Такие варианты самые распространенные на наших отечественных авто (в частности ВАЗ). Берут их за долговечность, небольшую цену, универсальность и компактность.

Минусами таких компрессоров является – низкий , зато на высоких мощность двигателя может вырасти до 30% от номинала. При оборотах от 4000, давление может достигать 0,5 – 0,6 бара.

Установка компрессора на ВАЗ

Что и говорить, в основном наш отечественный рынок состоит из продукции АвтоВАЗ, именно с него начинают молодые «тюнеры», поэтому самый распространенный вопрос – а можно ли установить на ВАЗ?

Конечно можно, причем последний — центробежный тип зачастую уже идет полным комплектом, для установки именно на наши автомобили, то есть так называемый «КИТ набор».


Монтирование системы достаточно простое. Однако для начала нужно установить увеличенную прокладку между блоком и головкой блока. Так советует производитель. Далее утрированная схема подключения:

1) Настраиваем фильтр воздухозаборника.

2) Крепим корпус на кронштейн

3) Подключаем приводу коленвала.

4) Закрепляем приводной ремень

5) Пользуемся.

Сейчас небольшое видео для понимания.

Что можно добиться — как я писал выше, на высоких оборотах давление может достигать 0,5 — 0,6 бара. Если правильно настроить впрыск топлива прошить ЭБУ, либо перенастроить карбюратор, то можно добиться 30% на верхах! Это очень существенно.

На этом буду заканчивать, думаю моя статья была вам полезна.

Механический наддув является одним из способов повысить мощность двигателя. Главным элементом такой системы является механический нагнетатель (Supercharger или compressor). Он представляет собой компрессор, приводимый в действие за счет вращения коленчатого вала. Установка механического нагнетателя обеспечивает увеличение мощности двигателя до 50%. Supercharger осуществляет забор воздуха через воздушный фильтр, сжимает и далее отправляет его во впускной коллектор ДВС, что и способствует повышению мощности последнего.

Конструкция и принцип работы механического наддува

В современном автомобилестроении применяется несколько видов систем механического наддува, каждая из которых имеет свои конструктивные особенности и принцип нагнетания воздуха.

Устройство механического наддува

Система механического наддува состоит из следующих элементов:

  • механический нагнетатель (компрессор);
  • интеркулер;
  • дроссельная заслонка;
  • заслонка перепускного трубопровода;
  • воздушный фильтр;
  • датчики давления наддува;
  • датчики температуры воздуха во впускном коллекторе.
Схема работа механического наддува

Управление механическим нагнетателем осуществляется при помощи дроссельной заслонки, которая при высоких оборотах открыта. При этом заслонка трубопровода закрыта, и весь воздух поступает во впускной коллектор двигателя. Когда двигатель работает на низких оборотах, дроссельная заслонка открыта под небольшим углом, а заслонка трубопровода открыта полностью, что обеспечивает возврат части воздуха на вход компрессора.

Поступающий из нагнетателя воздух проходит через интеркулер, что снижает температуру нагнетаемого воздуха примерно на 10°C, способствуя более высокой степени его сжатия.

Типы привода механического наддува


Ременной привод кулачкового компрессора

Передача крутящего момента от коленчатого вала к механическому компрессору может осуществляться различными способами:

  • Система прямого привода — предполагает монтаж компрессора непосредственно на фланец коленчатого вала двигателя.
  • Ременный привод. Передача усилий реализуется при помощи ремня. Различные производители используют свои виды ремней (плоские, клиновидные или зубчатые). Системы с использованием ремня характеризуются коротким сроком службы и вероятностью возникновения проскальзывания.
  • Цепной привод. Имеет аналогичный ременному приводу принцип.
  • Шестеренчатый привод. Недостатком такой системы является повышенный шум и большие габариты.

Виды механических компрессоров

Центробежный компрессор

Каждый тип привода наддува имеет свои эксплуатационные особенности. Всего различают три вида механических нагнетателей:

  • Центробежный нагнетатель. Самый распространенный вид механических нагнетателей. Основной рабочий элемент системы — колесо (крыльчатка), которое имеет сходную конструкцию с компрессорным колесом турбины. Оно вращается со скоростью порядка 60 000 оборотов в минуту. При этом воздух всасывается в центральную часть компрессорного колеса в режиме высокой скорости и малого давления. Пройдя через лопасти нагнетателя, воздух подается во впускной коллектор, но уже в режиме низкой скорости и высокого давления. Этот вид нагнетателя используется в комплексе с турбокомпрессорами для устранения турбоямы.
  • Винтовой нагнетатель. Представляет собой систему из двух вращающихся шнеков (винтов) конической формы. Воздух, попадая в более широкую часть, проходит по камерам компрессора и, благодаря вращению, сжимается и нагнетается в патрубок впускного коллектора. Такие системы применяются в основном на спортивных и дорогостоящих автомобилях, поскольку достаточно сложны в изготовлении. Их преимущество — высокая эффективность работы.
  • Кулачковый нагнетатель (roots). Один из первых видов механических нагнетателей. Конструктивно он представляет собой два ротора со сложным профилем сечения. Оси вращения роторов соединяются двумя одинаковыми шестернями. При вращении системы воздух перемещается между стенками корпуса и кулачками, в результате чего происходит его нагнетание во впускной трубопровод. Недостатком этой системы является образование избыточного давления, что провоцирует сбои в работе наддува. Для устранения этого явления в конструкции кулачкового нагнетателя предусматриваются либо муфта с электрическим приводом (управление с отключением нагнетателя), либо перепускной клапан (без отключения нагнетателя).

Винтовой нагнетатель

Механические нагнетатели довольно часто применяются на автомобилях марок Cadillac, Audi, Mercedes-Benz а также Toyota. При этом кулачковые и винтовые компрессоры устанавливаются преимущественно на мощных спортивных автомобилях с бензиновыми двигателями, а центробежные входят в систему двойного турбонаддува для дизельных моторов.

Преимущества и недостатки схемы с механическим нагнетателем

В сравнении с турбонагнетателем механическая система наддува приводится в движение не отработавшими газами двигателя, а за счет вращения коленчатого вала. Это означает, что, с одной стороны, мощность мотора увеличивается, а с другой — возникает дополнительная нагрузка, отбирающая, в зависимости от вида компрессора, до 30% производительности двигателя. Также минусом системы является высокий уровень шума, который создает привод системы.

Использование механического наддува на повышенных оборотах провоцирует более быстрый износ деталей двигателя, а потому они должны быть изготовлены из материалов повышенной прочности.
Основным достоинством механического привода является низкая стоимость изготовления (в сравнении с турбонаддувом), простота монтажа, а также мгновенный отклик системы на повышение оборотов двигателя. Так системы с винтовыми и кулачковыми компрессорами обеспечивают высокую динамику разгона, а центробежные нагнетатели стабильную работу двигателя на высоких скоростях.

Для более эффективной работы Вашего транспортного средства, автомобильные производители часто прибегают к системам турбонаддува. Но так ли положительно новый тип турбокомпрессора скажется на работе двигателя? Чтобы топливный расход автомобиля стал гораздо меньше, производители зачастую используют одно ключевое решение – сокращение объёма силового агрегата. Но кроме всего прочего, чтобы производительность таких двигателей оставалась на достойном уровне, обычно устанавливают турбокомпрессоры, которые управляются выхлопом и обладают задержкой, что более известна под термином «турбо лаг».

Автомобили с подвергались этой проблеме много лет подряд, что сопровождалось постоянными жалобами и недовольством со стороны владельцев. Была найдена, как казалось, панацея – одновременная установка двух турбин, что минимизировало эффект турбо ямы. Но это, увы, не стало ключевым решением.

История электрической турбины

Электрическая турбина после длительного времени разработок уже готова к массовому применению. Об этом первой заявила компания Controlled Power Technologies (CPT) из Британии. Электрический турбонагнетатель, по их словам, уже готов к массовому производству. Руководство СРТ уже подписало соглашение с фирмой Switched Reluctance Drives Limited, что займётся разработкой OEM-модуля, основанного на этой технологической базе.

Switched Reluctance Drives займётся серийным производством электрических компрессоров. Британские разработчики, тем временем уже преуспели в создании реальных электрических компрессоров для двигателей внутреннего сгорания. Турбонагнетатель CPT будет устанавливаться на любые двигатели: атмосферные, турбированные дизельные или бензиновые.

Компания Controlled Power Technologies разрабатывала электрическую турбину на протяжении почти восьми лет, работа над ней началась ещё в начале 21-го века. Создатели электрической турбины заявляют, что она может работать от бортовой электросети напряжением в 12 вольт, а её использование избавит двигатель от эффекта турбоямы, а также задействует нагнетатель даже в режиме низких оборотов. Особенность данной технологии заключается в использовании регенеративной энергии. Обратное давление, что ранее сбрасывалось через обводной клапан блоу офф при сбросе акселератора, теперь направляется на вращение лопастями турбины маховика, что позволяет вырабатывать энергию и заряжать аккумулятор.

Прототип машины с электрической турбиной разработала немецкая компания AVL List. Электрический нагнетатель был адаптирован к двухлитровому бензиновому двигателю с непосредственным топливным впрыском. Такой силовой агрегат, который был установлен на Vokswagen Passat, загрязняет атмосферу очень деликатно, если так можно выразиться, всего 159 граммов на каждый километр пути, а это на целых 20 процентов меньше чем у аналогичного традиционного 2.0 TFSI с такой же мощностью, и меньше, чем у 170-сильного турбодизеля с таким же объёмом.

Разработчики утверждают, что данная технология помогает автомобильным производителям вложиться в установленные экологические нормы, которые вступили в силу уже в этом году. Компания Controlled Power Technologies создала стартер-генератор SpeedStart с ременным приводом, который используется для работы системы Start\Stop, что отключает двигатель на кратковременных остановках, что обязательно сэкономит в условиях движения по городу в пробках.

Но наряду с исследователями из Британии, немецкие разработчики создали доступную идею, для нагнетания воздуха и причём с минимальными затратами, что стала признанной во всей Европе. Существенно эффективным способом улучшения нагнетания воздуха в двигателе является мини-турбина от компании KAMANN, которая монтируется во впускную систему. Электро турбонагнетатель от KAMANN является миниатюрной турбиной, которая выполняет роль электрической системы нагнетания воздуха, установленной в подкапотное пространство. Такой монтаж электрической турбины повышает крутящий момент мотора, в свою очередь способствуя понижению топливного расхода. Это улучшает качество выхлопных газов, уменьшая показатели углекислого газа и пролонгируя срок функционирования катализаторов, что улучшает общие скоростные характеристики автомобиля.

Принцип работы электротурбины

Принцип работы электрической турбины отличается от классического турбонагнетателя лишь за счёт конструкции оси, которая соединяет крыльчатки у классики. Когда турбокомпрессор достигает максимальных оборотов, контроллер включает электрический двигатель в генераторном режиме. За счёт этого предотвращается превышение пикового числа оборотов двигателя. В случаях слишком редкого понижения оборотов муфтовые соединения позволяют вращать крыльчатки независимо друг от друга, в свою очередь снижая нагрузку на подшипники.

Плюсы и минусы электрической турбины

Чем больше мощность, тем меньше выхлоп

Многие обычные двигатели внутреннего сгорания оснащаются турбинами для того, чтобы получить большую мощность и лучшее ускорение. Они расходуют меньше топлива и следовательно загрязняют атмосферу выхлопными газами также гораздо меньше в сравнении с аналогичными агрегатами без компрессора и нагнетателя. Всё, конечно же, это производит прекрасное впечатление в теоретическом плане, но практика показывает иные результаты. Большой крутящий момент зачастую находится лишь в узком диапазоне числа оборотов двигателя. Зачастую у некоторых турбо-дизелей можно наблюдать плохой показатель ускорения, в моменты изменения положения педали акселератора мотору нужно некоторое время для увеличения мощности для необходимого ускорения. Это явление уже упоминалось в данной статье как турбо-яма».

Экономия и быстрый отклик

Проведя анализ рынка современных автомобилей, компания KAMANN утверждает, что к 2020 году доля автомобилей, которые будут оснащаться электрическими турбинами, будет составлять 50-60% от общего количества сошедших с конвейера автомобилей. Ими также был разработан прибор, который помогает быстрее реагировать на изменение педали акселератора и в то же время оставаться экономичным. Эти требования очень сложно реализовать в двигателе с обычной системой турбонаддува. Такая турбосистема эффективна только в пределах определённого диапазона оборотов мотора.

Неоспоримое преимущество электрических турбин в эффективном нагнетании воздуха во всём диапазоне оборотов мотора автомобиля, даже в момент запуска двигателя, ведь нагнетаемый воздух уже находится во впускном коллекторе. В момент нагнетания воздуха, когда двигатель запускается, электрическая турбина мгновенно откликается на нажатие акселератора даже при маленькой скорости. Даже нагнетая воздух в момент переключения скоростей, Вы непрерывно будете получать дополнительную энергию для того чтобы двигаться и ускоряться.

Турбо нагнетатель, как дополнение турбосистемы

Эффективная работа большинства турбин начинается только свыше 3000 оборотов в минуту , а это означает, что крутящий момент ниже этой цифры уже не увеличивается, что не придаёт Вашему автомобилю динамичности, а двигателю мощности. Поэтому классические турбины отходят далеко в прошлое. Установка электрической турбины позволяет двигателю уже при 1200 оборотов в минуту сразу после нажатия педали газа, получать больше чистого воздуха, не затрачивая при этом необходимую энергию. В этот момент «номы» подскакивают на 12% в сравнении с классикой!

Увеличение мощности равно экономия

Главным преимуществом установки электрической турбины является предоставление двигателю непрерывного и гораздо быстрого ускорения автомобиля. Kamann Autosport сравнили автомобили с бензиновым мотором объёмом 1,4 с установленной электрической турбиной и аналогичным автомобилем но с объёмом 1,6 и без турбины. Результат был следующим: оба автомобиля выдали приблизительно одинаковую мощность и крутящий момент при том же самом топливном расходе. Следовательно эти два двигателя одинаково мощны, но первый потребляет на 10% меньше топлива! А это значит, что наряду с возросшей мощностью топливный расход совсем не увеличится!

Электрическая турбина обделена всеми недостатками обычной турбины, а размер её гораздо меньше. Кроме очевидных преимуществ, конечно, присутствуют и недостатки. Модуль электротурбины в зависимости от производителя достаточно прожорлив, что требует монтажа дополнительного оборудования.

Подписывайтесь на наши ленты в

От двигателя внутреннего сгорания отказываться пока рано. По ряду причин. Поэтому многие производители работают над технологиями, которые позволят оптимизировать силовые системы, использующие углеводородное топливо. Одной из таких технологий является электрический нагнетатель воздуха. Немецкие инженеры считают, что электротурбонагнетатель в будущем вытеснит традиционный наддув, и поможет сделать ДВС компактнее, экономичнее, и в тоже время мощнее.

Для начала разберемся, что такое турбонаддув или турбонагнетатель. Как известно, двигатель внутреннего сгорания работает не на самом топливе, а на топливно-воздушной смеси. В случае с бензиновым мотором пропорции должны быть следующими: 1 часть бензина на 13-15 частей воздуха. Еще в конце 19 века знаменитый Готтлиб Даймлер понял, что нужно увеличивать не подачу топлива, а воздуха. Долгое время добиваться этого приходилось за счет увеличения объема цилиндров, из-за чего агрегаты получались большими и прожорливыми. Но в 1905 году швейцарский инженер Альфред Бюхи запатентовал первое в мире устройство нагнетателя воздуха в цилиндры, которое для работы использовало энергию выхлопных газов.

В 90-е годы прошлого столетия инженеры стали использовать турбонаддув не только для увеличения мощности двигателя в легковом автомобиле, но и для экономии топлива и снижения выброса вредных веществ. С тех пор турбонаддув перестал быть частью тюнинга, и стал входить в базовую комплектацию дизельных машин многих брендов.

История электрического турбо-нагнетателя началась совсем недавно. С 2000 года его разработкой занимается британская фирма CPT (Controlled Power Technologies). Спустя 9 лет компания представила турбонаддув, способный работать от бортовой сети с напряжением 12 вольт. Инженерам удалось решить проблему механического нагнетателя – так называемой «турбоямы», то есть низкой способности работать на малых оборотах.

Электрические нагнетатели работают от небольшого электромотора, в отличие от механического турбонаддува, который задействует часть мощности (1-5%) двигателя. Кроме того, устройство CPT само может генерировать энергию: обратное давление, возникающее при сбросе выхлопных газов, крутит лопасти турбины, помогая вырабатывать электричество для зарядки аккумулятора.

Первый прототип автомобиля с электронагнетателем был разработан немецкой фирмой AVL List. Наддув CPT адаптировали для 2-литрового бензомотора с непосредственным впрыском топлива, установленного на VW Passat. Автомобиль выбрасывал в атмосферу на 20% меньше вредных веществ, чем аналоги с механическим нагнетателем.

На данном этапе Controlled Power Technologies координирует свои действия с такими крупными компаниями, как Ford, Valeo и Ricardo. На основе технологии CPT разработан электрический нагнетатель Hyboost, турбину в которой вращает микро-гибридная установка Valeo, получающая энергию от регенеративного торможения.

Ford Focus, оснащенный новым 3-цилиндровым EcoBoost с системой VTES (переменное увеличение крутящего момента) и нагнетателем Hyboost, улучшил экономичность на 30-35%, по сравнению с двигателями, демонстрирующими аналогичные показатели мощности. Стоит отметить, что мотор объемом всего 1 литр выдает 145 лошадиных сил при 240 Нм крутящего момента!

BMW тоже работает над созданием собственного электрического турбонагнетателя. Разработка баварской компании лишена жесткой связи между нагнетателем и ротором – между ними появился дополнительный узел, который включает в себя электромотор и пару фрикционов.

На холостом ходу ротор вращается свободно от нагнетателя, уменьшая нагрузку на двигатель. Электромотор в этот момент тоже работает, подстраивая свои обороты под скорость вращения вала компрессора. При нажатии на педаль газа сцепление между электродвигателем и компрессором замыкается. В этом случае нагнетатель раскручивается только за счет электромотора, что позволяет избежать турбоям.

По слухам, первой BMW с электрическим турбонагнетателем станет M3 нового поколения.

— ecoconceptcars.ru —
Понравилось? Лайкни нас на Facebook