В россии испытали пульсирующий детонационный двигатель. В россии испытали детонационные ракетные двигатели Детонационный двигатель энергомаш

Камеры сгорания с
непрерывной детонацией

Идея камеры сгорания с непрерывной детонацией предложена в 1959 г. академиком АН СССР Б.В. Войцеховским . Непрерывно-детонационная камера сгорания (НДКС) представляет собой кольцевой канал, образованный стенками двух коаксиальных цилиндров. Если на днище кольцевого канала поместить смесительную головку, а другой конец канала оборудовать реактивным соплом, то получится проточный кольцевой реактивный двигатель. Детонационное горение в такой камере можно организовать, сжигая топливную смесь, подаваемую через смесительную головку, в детонационной волне, непрерывно циркулирующей над днищем. При этом в детонационной волне будет сгорать топливная смесь, вновь поступившая в камеру сгорания за время одного оборота волны по окружности кольцевого канала. Частота вращения волны в камере сгорания диаметром около 300 мм будет иметь величину порядка 105 об/мин и выше. К достоинствам таких камер сгорания относят: (1) простоту конструкции; (2) однократное зажигание; (3) квазистационарное истечение продуктов детонации; (4) высокую частоту циклов (килогерцы); (5) короткую камеру сгорания; (6) низкий уровень эмиссии вредных веществ (NO, CO и др.); (7) низкий уровень шума и вибраций. К недостаткам таких камер относят: (1) необходимость компрессора или турбонасосного агрегата; (2) ограниченность управления; (3) сложность масштабирования; (4) сложность охлаждения.

Крупные инвестиции в НИОКР и ОКР по этой тематике в США начались сравнительно недавно: 3-5 лет назад (ВВС, ВМФ, НАСА, корпорации аэрокосмической отрасли). Судя по открытым публикациям, в Японии, Китае, Франции, Польше и Корее в настоящее время очень широко развернуты работы по проектированию таких камер сгорания с помощью методов вычислительной газовой динамики. В Российской Федерации исследования в этом направлении наиболее активно проводятся в НП «Центр ИДГ» и в ИГиЛ СО РАН.

Важнейшие достижения в этой области науки и техники перечислены ниже. В 2012 г. специалисты фирм Pratt & Whitney и Rocketdyne (США) опубликовали результаты испытаний экспериментального ракетного двигателя модульной конструкции с заменяемыми форсунками для подачи топливных компонентов и с заменяемыми соплами. Проведены сотни огневых испытаний с использованием разных топливных пар: водород - кислород, метан - кислород, этан - кислород и др. На основе испытаний построены карты устойчивых рабочих режимов двигателя с одной, двумя и более детонационными волнами, циркулирующими над днищем камеры. Исследованы различные способы зажигания и поддержания детонации. Максимальное время работы двигателя, достигнутое в опытах с водяным охлаждением стенок камеры, составило 20 с. Сообщается, что это время ограничивалось только запасом топливных компонентов, но не тепловым состоянием стенок. Польские специалисты совместно с европейскими партнерами работают над созданием непрерывно-детонационной камеры сгорания для вертолетного двигателя. Им удалось создать камеру сгорания, устойчиво работающую в режиме непрерывной детонации в течение 2 с на смеси водорода с воздухом и керосина с воздухом в компоновке с компрессором двигателя ГТД350 советского производства. В 2011-2012 г.г. в Институте гидродинамики СО РАН экспериментально зарегистрирован процесс непрерывно-детонационного горения гетерогенной смеси микронных частиц древесного угля с воздухом в дисковой камере сгорания диаметром 500 мм. До этого в ИГиЛ СО РАН были успешно проведены эксперименты с кратковременной (до 1-2 с) регистрацией непрерывной детонации воздушных смесей водорода и ацетилена, а также кислородных смесей ряда индивидуальных углеводородов. В 2010-2012 г.г. в Центре ИДГ с использованием уникальных вычислительных технологий созданы основы проектирования непрерывно-детонационных камер сгорания как для ракетных, так и для воздушно-реактивных двигателей и впервые расчетным способом воспроизведены результаты экспериментов при работе камеры с раздельной подачей топливных компонентов (водорода и воздуха). Кроме того, в 2013 г. в НП «Центр ИДГ» спроектирована, изготовлена и испытана непрерывно-детонационная кольцевая камера сгорания диаметром 400 мм, шириной зазора 30 мм и высотой 300 мм, предназначенная для выполнения программы исследований, направленных на экспериментальное доказательство энергоэффективности непрерывно-детонационного горения топливно-воздушных смесей.

Важнейшая проблема, с которой сталкиваются разработчики при создании непрерывно-детонационных камер сгорания, работающих на штатном топливе - та же, что и для импульсно-детонационных камер сгорания, т.е. низкая детонационная способность таких топлив в воздухе. Другая важная проблема - снижение потерь давления при подаче топливных компонентов в камеру сгорания, чтобы обеспечить повышение полного давления в камере. Еще одна проблема - охлаждение камеры. В настоящее время способы преодоления этих проблем изучаются.

Большинство отечественных и зарубежных экспертов считают, что обе обсуждаемые схемы организации детонационного цикла являются перспективными как для ракетных, так и для воздушно-реактивных двигателей. Никаких фундаментальных ограничений для практической реализации этих схем не существует. Основные риски на пути создания камер сгорания нового типа связаны с решением инженерных проблем.
Варианты конструкций и способы организации рабочего процесса в импульсно-детонационных и непрерывно-детонационных камерах сгорания защищены многочисленными отечественными и зарубежными патентами (сотни патентов). Главный недостаток патентов - замалчивание или практически неприемлемое (по разным причинам) решение основной проблемы реализации детонационного цикла - проблемы низкой детонационной способности штатных топлив (керосин, бензин, дизтопливо, природный газ) в воздухе. Предлагаемые практически неприемлемые решения этой проблемы заключаются в использовании предварительной тепловой или химической подготовки топлива перед подачей в камеру сгорания, использование активных добавок, включая кислород, или использование специальных топлив с высокой детонационной способностью. Применительно к двигателям, использующим активные (самовоспламеняющиеся) топливные компоненты, эта проблема не стоит, однако остаются актуальными проблемы их безопасной эксплуатации.

Рис. 1: Сравнение удельных импульсов воздушно-реактивных двигателей: ТРД , ПВРД , ПуВРД и ИДД

Применение импульсно-детонационных камер сгорания, в основном, ориентировано на замену существующих камер сгорания в таких воздушно-реактивных силовых установках как ПВРД и ПуВРД. Дело в том, что по такой важной характеристике двигателя, как удельный импульс, ИДД, перекрывая весь диапазон скоростей полета от 0 до числа Маха М = 5, теоретически обладает удельным импульсом, сравнимым (при числе Маха полета М от 2.0 до 3.5) с ПВРД и существенно превышающим удельный импульс ПВРД при числе Маха полета М от 0 до 2 и от 3.5 до 5 (рис. 1). Что касается ПуВРД, то его удельный импульс при дозвуковых скоростях полета почти в 2 раза меньше, чем у ИДД. Данные по удельному импульсу для ПВРД заимствованы из , где проведены одномерные расчеты характеристик идеальных ПВРД, работающих на керосино-воздушной смеси с коэффициентом избытка горючего 0.7. Данные по удельному импульсу воздушно-реактивных ИДД заимствованы из статей , где проведены многомерные расчеты тяговых характеристик ИДД в условиях полета с дозвуковыми и сверхзвуковыми скоростями на разных высотах. Отметим, что в отличие от расчетов расчеты в проведены с учетом потерь, вызванных диссипативными процессами (турбулентность, вязкость, ударные волны и др.).

Для сравнения на рис. 1 представлены результаты расчетов для идеального турбореактивного двигателя (ТРД). Видно, что ИДД уступает идеальному ТРД по удельному импульсу при числах Маха полета до 3.5, однако превосходит ТРД по этому показателю при М > 3.5. Таким образом, при М > 3.5 и ПВРД, и ТРД уступают воздушно-реактивным ИДД по удельному импульсу, и это делает ИДД весьма перспективным. Что касается низких сверхзвуковых и дозвуковых скоростей полета, то ИДД, уступая ТРД по удельному импульсу, все же может считаться перспективным ввиду необычайной простоты конструкции и дешевизны, что крайне важно для одноразовых приложений (средства доставки, мишени и др.).

Наличие «скважности» в тяге, создаваемой такими камерами, делает их малопригодными для маршевых жидкостных ракетных двигателей (ЖРД). Тем не менее, запатентованы схемы импульсно-детонационных ЖРД многотрубной конструкции с низкой скважностью тяги. Кроме того, такие силовые установки могут применяться в качестве двигателей для коррекции орбиты и орбитальных перемещений искусственных спутников Земли и иметь множество других приложений.

Применение непрерывно-детонационных камер сгорания, в основном, ориентировано на замену существующих камер сгорания в ЖРД и ГТД.

Экология потребления.Наука и техника:В конце августа 2016 года мировые информационные агентства облетела новость: на одном из стендов НПО «Энергомаш» в подмосковных Химках заработал первый в мире полноразмерный жидкостный ракетный двигатель (ЖРД) с использованием детонационного горения топлива.

В конце августа 2016 года мировые информационные агентства облетела новость: на одном из стендов НПО «Энергомаш» в подмосковных Химках заработал первый в мире полноразмерный жидкостный ракетный двигатель (ЖРД) с использованием детонационного горения топлива. К этому событию отечественная наука и техника шла 70 лет.

Идея детонационного двигателя была предложена советским физиком Я. Б. Зельдовичем в статье «Об энергетическом использовании детонационного сгорания», опубликованной в «Журнале технической физики» еще в 1940 году. С тех пор во всем мире шли исследования и эксперименты по практической реализации перспективной технологии. В этой гонке умов вперед вырывались то Германия, то США, то СССР. И вот важный приоритет в мировой истории техники закрепила за собой Россия. В последние годы чем-то подобным нашей стране удается похвастать не часто.

На гребне волны

В чем же состоят преимущества детонационного двигателя? В традиционных ЖРД, как, впрочем, и в обычных поршневых или турбореактивных авиадвигателях, используется энергия, которая выделяется при сжигании топлива. В камере сгорания ЖРД при этом образуется стационарный фронт пламени, горение в котором происходит при неизменном давлении. Этот процесс обычного горения называется дефлаграцией. В результате взаимодействия горючего и окислителя температура газовой смеси резко возрастает и из сопла вырывается огненный столб продуктов сгорания, которые и образуют реактивную тягу.

Детонация - это тоже горение, но происходит оно в 100 раз быстрее, чем при обычном сжигании топлива. Этот процесс идет так быстро, что детонацию часто путают со взрывом, тем более что при этом выделяется столько энергии, что, к примеру, автомобильный мотор при возникновении этого явления в его цилиндрах и в самом деле может разрушиться. Однако детонация - это не взрыв, а вид горения столь стремительного, что продукты реакции даже не успевают расшириться, поэтому этот процесс, в отличие от дефлаграции, идет при постоянном объеме и резко возрастающем давлении.

На практике это выглядит следующим образом: вместо стационарного фронта пламени в топливной смеси внутри камеры сгорания формируется детонационная волна, которая движется со сверхзвуковой скоростью. В этой волне сжатия и происходит детонация смеси горючего и окислителя, а это процесс с термодинамической точки зрения куда более эффективный, чем обычное сжигание топлива. КПД детонационного сгорания на 25–30% больше, то есть при сжигании одинакового количества топлива получается больше тяги, а благодаря компактности зоны горения детонационный двигатель по мощности, снимаемой с единицы объема, теоретически на порядок превосходит обычные ЖРД.

Уже одного этого оказалось достаточно, чтобы привлечь самое пристальное внимание специалистов к этой идее. Ведь тот застой, который сейчас возник в развитии мировой космонавтики, на полвека застрявшей на околоземной орбите, в первую очередь связан с кризисом ракетного двигателестроения. В кризисе, кстати, находится и авиация, не способная перешагнуть порог трех скоростей звука. Этот кризис можно сравнить с ситуацией в поршневой авиации в конце 1930-х годов. Винт и двигатель внутреннего сгорания исчерпали свой потенциал, и только появление реактивных двигателей позволило выйти на качественно новый уровень высот, скоростей и дальности полетов.

Конструкции классических ЖРД за последние десятилетия были вылизаны до совершенства и практически подошли к пределу своих возможностей. Увеличить их удельные характеристики в будущем возможно лишь в очень незначительных пределах - на считаные проценты. Поэтому мировая космонавтика вынуждена идти по экстенсивному пути развития: для пилотируемых полетов на Луну приходится строить гигантские ракеты-носители, а это очень сложно и безумно дорого, во всяком случае для России. Попытка преодолеть кризис с помощью ядерных двигателей наткнулась на экологические проблемы. Появление детонационных ЖРД, быть может, и рано сравнивать с переходом авиации на реактивную тягу, но ускорить процесс освоения космоса они вполне способны. Тем более что у этого типа реактивных двигателей есть еще одно очень важное преимущество.
ГРЭС в миниатюре

Обычный ЖРД - это, в принципе, большая горелка. Для увеличения его тяги и удельных характеристик нужно поднимать давление в камере сгорания. При этом топливо, которое впрыскивается в камеру через форсунки, должно подаваться при большем давлении, чем реализуется в процессе сгорания, иначе струя топлива просто не сможет проникнуть в камеру. Поэтому самым сложным и дорогим агрегатом в ЖРД является вовсе не камера с соплом, которое у всех на виду, а топливный турбонасосный агрегат (ТНА), спрятанный в недрах ракеты среди хитросплетения трубопроводов.

К примеру, у самого мощного в мире ЖРД РД-170, созданного для первой ступени советской сверхтяжелой ракеты-носителя «Энергия» тем же НПО «Энергия», давление в камере сгорания составляет 250 атмосфер. Это очень много. Но давление на выходе из кислородного насоса, качающего окислитель в камеру сгорания, достигает величины 600 атм. Для привода этого насоса используется турбина мощностью 189 МВт! Только представьте себе это: колесо турбины диаметром 0,4 м развивает мощность, в четыре раза большую, чем атомный ледокол «Арктика» с двумя ядерными реакторами! При этом ТНА - это сложное механическое устройство, вал которого совершает 230 оборотов в секунду, а работать ему приходится в среде жидкого кислорода, где малейшая не искра даже, а песчинка в трубопроводе приводит к взрыву. Технологии создания такого ТНА и есть главное ноу-хау «Энергомаша», обладание которым позволяет российской компании и сегодня продавать свои двигатели для установки на американских ракетах-носителях Atlas V и Antares. Альтернативы российским двигателям в США пока нет.

Для детонационного двигателя такие сложности не нужны, поскольку давление для более эффективного сгорания обеспечивает сама детонация, которая и представляет собой бегущую в топливной смеси волну сжатия. При детонации давление увеличивается в 18–20 раз без всякого ТНА.

Чтобы получить в камере сгорания детонационного двигателя условия, эквивалентные, к примеру, условиям в камере сгорания ЖРД американского «Шаттла» (200 атм), достаточно подавать топливо под давлением... 10 атм. Агрегат, необходимый для этого, по сравнению с ТНА классического ЖРД - все равно что велосипедный насос рядом Саяно-Шушенской ГРЭС.

То есть детонационный двигатель будет не только мощнее и экономичнее обычного ЖРД, но и на порядок проще и дешевле. Так почему же эта простота в течение 70 лет не давалась в руки конструкторам?
Главная проблема, которая встала перед инженерами, - как совладать с детонационной волной. Дело ведь не только в том, чтобы сделать двигатель прочнее, чтобы он выдержал повышенные нагрузки. Детонация - это не просто взрывная волна, а кое-что похитрее. Взрывная волна распространяется со скоростью звука, а детонационная со сверхзвуковой скоростью - до 2500 м/с. Она не образует стабильного фронта пламени, поэтому работа такого двигателя носит пульсирующий характер: после каждой детонации необходимо обновить топливную смесь, после чего запустить в ней новую волну.

Попытки создать пульсирующий реактивный двигатель предпринимались задолго до идеи с детонацией. Именно в применении пульсирующих реактивных двигателей пытались найти альтернативу поршневым моторам в 1930-е годы. Привлекала опять же простота: в отличие от авиационной турбины для пульсирующего воздушно-реактивного двигателя (ПуВРД) не нужны были ни вращающийся со скоростью 40 000 оборотов в минуту компрессор для нагнетания воздуха в ненасытное чрево камеры сгорания, ни работающая при температуре газа свыше 1000˚С турбина. В ПуВРД давление в камере сгорания создавали пульсации в горении топлива.

Первые патенты на пульсирующий воздушно-реактивный двигатель были получены независимо друг от друга в 1865 году Шарлем де Луврье (Франция) и в 1867 году Николаем Афанасьевичем Телешовым (Россия). Первую работоспособную конструкцию ПуВРД запатентовал в 1906 году русский инженер В.В. Караводин, годом позже построивший модельную установку. Установка Караводина вследствие ряда недостатков не нашла применения на практике. Первым ПуВРД, работавшим на реальном летательном аппарате, стал немецкий Argus As 014, основанный на патенте 1931 года мюнхенского изобретателя Пауля Шмидта. Argus создавался для «оружия возмездия» - крылатой бомбы «Фау-1». Аналогичную разработку создал в 1942 году советский конструктор Владимир Челомей для первой советской крылатой ракеты 10Х.

Конечно, эти двигатели еще не были детонационными, поскольку в них использовались пульсации обычного горения. Частота этих пульсаций была невелика, что порождало характерный пулеметный звук при работе. Удельные характеристики ПуВРД из-за прерывистого режима работы в среднем были невысоки и после того, как конструкторы к концу 1940-х годов справились со сложностями создания компрессоров, насосов и турбин, турбореактивные двигатели и ЖРД стали королями неба, а ПуВРД остались на периферии технического прогресса.

Любопытно, что первые ПуВРД немецкие и советские конструкторы создали независимо друг от друга. Кстати, и идея детонационного двигателя в 1940 году пришла в голову не одному только Зельдовичу. Одновременно с ним те же мысли высказали Фон Нейман (США) и Вернер Деринг (Германия), так что в международной науке модель использования детонационного горения назвали ZND.

Идея объединить ПуВРД с детонационным горением была очень заманчивой. Но фронт обычного пламени распространяется со скоростью 60–100 м/с и частота его пульсаций в ПуВРД не превышает 250 в секунду. А детонационный фронт движется со скоростью 1500‒2500 м/с, таким образом частота пульсаций должна составлять тысячи в секунду. Реализовать такую скорость обновления смеси и инициации детонации на практике было затруднительно.

Тем не менее попытки создания работоспособных пульсирующих детонационных двигателей продолжались. Работа специалистов ВВС США в этом направлении увенчалась созданием двигателя-демонстратора, который 31 января 2008 года впервые поднялся в небо на экспериментальном самолете Long-EZ. В историческом полете двигатель проработал... 10 секунд на высоте 30 метров. Тем не менее приоритет в данном случае остался за Соединенными Штатами, а самолет по праву занял место в Национальном музее ВВС США.

Между тем уже давно была придумана другая, гораздо более перспективная схема

Как белка в колесе

Мысль закольцевать детонационную волну и заставить ее бегать в камере сгорания как белка в колесе родилась у ученых в начале 1960-х годов. Явление спиновой (вращающейся) детонации теоретически предсказал советский физик из Новосибирска Б. В. Войцеховский в 1960 году. Почти одновременно с ним, в 1961 году, ту же идею высказал американец Дж. Николлс из Мичиганского университета.

Ротационный, или спиновый, детонационный двигатель конструктивно представляет собой кольцевую камеру сгорания, топливо в которую подается с помощью радиально расположенных форсунок. Детонационная волна внутри камеры движется не в осевом направлении, как в ПуВРД, а по кругу, сжимая и выжигая топливную смесь перед собой и в конце концов выталкивая продукты сгорания из сопла точно так же, как винт мясорубки выталкивает наружу фарш. Вместо частоты пульсаций мы получаем частоту вращения детонационной волны, которая может достигать нескольких тысяч в секунду, то есть практически двигатель работает не как пульсирующий, а как обычный ЖРД со стационарным горением, но куда более эффективно, поскольку на самом деле в нем происходит детонация топливной смеси.

В СССР, как и в США, работы над ротационным детонационным двигателем шли с начала 1960-х годов, но опять же при кажущейся простоте идеи ее реализация потребовала решения головоломных теоретических вопросов. Как организовать процесс так, чтобы волна не затухала? Необходимо было понимание сложнейших физико-химических процессов, происходящих в газовой среде. Тут расчет велся уже не на молекулярном, а на атомарном уровне, на стыке химии и квантовой физики. Процессы эти более сложны, чем те, что происходят при генерации луча лазера. Именно поэтому лазер уже давно работает, а детонационный двигатель - нет. Для понимания этих процессов потребовалось создать новую фундаментальную науку - физико-химическую кинетику, которой 50 лет назад еще не существовало. А для практического расчета условий, при которых детонационная волна не будет затухать, а станет самоподдерживающейся, потребовались мощные ЭВМ, появившиеся лишь в последние годы. Вот какой фундамент необходимо было положить в основание практических успехов по укрощению детонации.

Активные работы в этом направлении ведутся в Соединенных Штатах. Этими исследованиями занимаются Pratt & Whitney, General Electric, NASA. К примеру, в научно-исследовательской лаборатории ВМФ США разрабатываются спиновые детонационные газотурбинные установки для флота. В ВМФ США используется 430 газотурбинных установок на 129 кораблях, в год они потребляют топлива на три миллиарда долларов. Внедрение более экономных детонационных газотурбинных двигателей (ГТД) позволит сберечь гигантские средства.

В России над детонационными двигателями работали и продолжают работать десятки НИИ и КБ. В их числе и НПО «Энергомаш» - ведущая двигателестроительная компания российской космической промышленности, со многим предприятиями которой сотрудничает банк ВТБ. Разработка детонационного ЖРД велась не один год, но для того чтобы вершина айсберга этой работы засверкала под солнцем в виде успешного испытания, потребовалось организационное и финансовое участие небезызвестного Фонда перспективных исследований (ФПИ). Именно ФПИ выделил необходимые средства для создания в 2014 году специализированной лаборатории «Детонационные ЖРД». Ведь несмотря на 70 лет исследований, эта технология до сих пор остается в России «слишком перспективной», чтобы ее финансировали заказчики вроде Министерства обороны, которым нужен, как правило, гарантированный практический результат. А до него еще очень далеко.

Укрощение строптивой

Хочется верить, что после всего сказанного выше становится понятна та титаническая работа, которая проглядывает между строк краткого сообщения об испытаниях, прошедших на «Энергомаше» в Химках в июле - августе 2016 года: «Впервые в мире был зарегистрирован установившийся режим непрерывной спиновой детонации поперечных детонационных волн частотой около 20 кГц (частота вращения волны - 8 тысяч оборотов в секунду) на топливной паре „кислород - керосин“. Удалось добиться получения нескольких детонационных волн, уравновешивавших вибрационные и ударные нагрузки друг друга. Специально разработанные в центре имени М. В. Келдыша теплозащитные покрытия помогли справиться с высокими температурными нагрузками. Двигатель выдержал несколько пусков в условиях экстремальных вибронагрузок и сверхвысоких температур при отсутствии охлаждения пристеночного слоя. Особую роль в этом успехе сыграло создание математических моделей и топливных форсунок, позволявших получать смесь необходимой для возникновения детонации консистенции».

Разумеется, не стоит преувеличивать значение достигнутого успеха. Создан лишь двигатель-демонстратор, который проработал относительно недолго, и о его реальных характеристиках ничего не сообщается. По информации НПО «Энергомаш», детонационный ЖРД позволит поднять тягу на 10% при сжигании того же количества топлива, что и в обычном двигателе, а удельный импульс тяги должен увеличиться на 10–15%.

Но главный результат состоит в том, что практически подтверждена возможность организации детонационного горения в ЖРД. Однако путь до использования этой технологии в составе реальных летательных аппаратов предстоит еще долгий. Другой важный аспект заключается в том, что еще один мировой приоритет в области высоких технологий отныне закреплен за нашей страной: впервые в мире полноразмерный детонационный ЖРД заработал именно в России, и этот факт останется в истории науки и техники. опубликовано

Российская Федерация первой в мире провела успешные испытания детонационного жидкостного ракетного двигателя. Новую силовую установку создали в НПО «Энергомаш». Это успех для российской ракетно-космической отрасли, заявил корреспонденту Федерального агентства новостей научный обозреватель Александр Галкин .

Как сообщается на официальном сайте Фонда перспективных исследований, в новом двигателе тяга создается за счет контролируемых взрывов при взаимодействии топливной пары кислород-керосин.

«Значение успеха этих испытаний для опережающего развития отечественного двигателестроения трудно переоценить […] За ракетными двигателями такого рода будущее», - сообщил заместитель генерального директора и главный конструктор НПО «Энергомаш» Владимир Чванов.

Необходимо отметить, что к успешному испытанию новой силовой установки, инженеры предприятия шли последние два года. Исследовательские работы проводили ученые Новосибирского института гидродинамики им. М.А.Лаврентьева Сибирского отделения РАН и Московского авиационного института.

«Я думаю, что это новое слово в ракетной отрасли, и надеюсь, что оно окажется полезным для российской космонавтики. «Энергомаш» у нас сейчас единственная структура, которая разрабатывает ракетные двигатели и успешно ими торгует. Недавно они сделали для американцев двигатель РД-181, который по совокупной мощности слабее, нежели зарекомендовавший себя РД-180. Но дело то в том, что наметилось новое веяние в двигателестроении - уменьшение веса бортового оборудования космических кораблей приводит к тому, что двигатели становятся менее мощными. Это происходит за счет снижения выводимого веса. Так что надо пожелать успехов ученым и инженерам «Энергомаша», который работает, и что-то у него получается. Есть у нас еще головы креативные», - уверен Александр Галкин.

Необходимо отметить, что сам принцип создания реактивной струи за счет контролируемых взрывов может поднимать вопрос о безопасности будущих полетов. Однако переживать не стоит, так как ударная волна закручивается в камере сгорания двигателя.

«Уверен, систему гашения вибраций для новых двигателей придумают, потому что в принципе, традиционные ракеты-носители, которые разрабатывались еще Сергее Павловиче Королеве и Валентине Петровиче Глушко , тоже давали сильную вибрацию на корпус корабля. Но ведь как-то победили же, нашли способ погасить колоссальную тряску. Вот и здесь все будет так же», - заключает эксперт.

В настоящее время сотрудники НПО «Энергомаш» проводят дальнейшие изыскания по работе над стабилизацией тяги и уменьшением нагрузок на несущую конструкцию силовой установки. Как отмечают на предприятии, работа топливной пары кислород-керосин и сам принцип создания подъемной силы обеспечивает меньший расход топлива при большей мощности. В будущем начнутся испытания полноразмерной модели, и, возможно, его будут использовать для выведения на орбиту планеты полезных грузов или даже космонавтов.

Пока всё прогрессивное человечество из стран НАТО готовится приступить к испытаниям детонационного двигателя (испытания могут случиться в 2019 году (а скорее значительно позже)), в отсталой России объявили о завершении испытаний такого двигателя.

Объявили совершенно спокойно и никого не пугая. Но на Западе ожидаемо испугались и начался истерический вой – мы отстанем на всю оставшуюся жизнь. Работы над детонационным двигателем (ДД) ведутся в США, Германии, Франции и Китае. В общем, есть основания полагать, что решение проблемы интересует Ирак и Северную Корею – уж очень перспективная наработка, которая фактически означает новый этап в ракетостроении. И вообще в двигателестроении.

Идея детонационного двигателя впервые была озвучена в 1940 году советским физиком Я.Б. Зельдовичем. И создание такого двигателя сулило огромные выгоды. Для ракетного двигателя, например,:

  • В 10 000 раз повышается мощность по сравнению с обычным ЖРД. В данном случае мы говорим о мощности, получаемой с единицы объёма двигателя;
  • В 10 раз меньше топлива на единицу мощности;
  • ДД просто существенно (в разы) дешевле стандартного ЖРД.

Жидкостный ракетный двигатель – это такая большая и очень дорогая горелка. А дорогая потому, что для поддержания устойчивого горения требуется большое количество механических, гидравлических, электронных и других механизмов. Очень сложное производство. Настолько сложное, что США уже много лет не могут создать свой ЖРД и вынуждены закупать в России РД-180.

Россия очень скоро получит серийный надёжный недорогой лёгкий ракетный двигатель. Со всеми вытекающими последствиями:

ракета может нести в разы большее количество полезной нагрузки – сам двигатель весит существенно меньше, топлива нужно в 10 раз меньше на заявленную дальность полёта. А можно эту дальность просто в 10 раз увеличить;

себестоимость ракеты снижается кратно. Это хороший ответ для любителей организовать гонку вооружения с Россией.

А ещё есть дальний космос… Открываются просто фантастические перспективы по его освоению.

Впрочем, американцы правы и сейчас не до космоса – уже готовятся пакеты санкций, чтобы детонационный двигатель в России не случился. Мешать будут изо всех сил – уж больно серьёзную заявку на лидерство сделали наши учёные.

07 Фев 2018 Метки: 2311

Обсуждение: 3 комментария

    * В 10 000 раз повышается мощность по сравнению с обычным ЖРД. В данном случае мы говорим о мощности, получаемой с единицы объёма двигателя;
    В 10 раз меньше топлива на единицу мощности;
    —————
    как-то не вяжется с другими публикациями:
    «В зависимости от конструкции он может превосходить оригинальный ЖРД по КПД от 23-27% для типовой конструкции с расширяющимся соплом, вплоть до 36-37% прироста в КВРД (клиновоздушные ракетные двигатели)
    Они способны изменять давление истекающей газовой струи в зависимости от атмосферного давления, и экономить до 8-12% топлива на всём участке выведения конструкции (Основная экономия происходит на малых высотах, где она доходит до 25-30%).»

Испытания детонационного двигателя

FPI_RUSSIA / Vimeo

Специализированная лаборатория «Детонационные ЖРД» научно-производственного объединения «Энергомаш» провела испытания первых в мире полноразмерных демонстраторов технологий детонационного жидкостного ракетного двигателя. Как сообщает ТАСС, новые силовые установки работают на топливной паре кислород-керосин.

Новый двигатель, в отличие от других силовых установок, работающих по принципу внутреннего сгорания, функционирует за счет детонации топлива. Детонацией называется сверхзвуковое горение какого-либо вещества, в данном случае топливной смеси. При этом по смеси распространяется ударная волна, за которой следует химическая реакция с выделением большого количества тепла.

Изучение принципов работы и разработка детонационных двигателей ведется в некоторых странах мира уже больше 70 лет. Первые такие работы начались еще в Германии в 1940-х годах. Правда тогда работающего прототипа детонационного двигателя исследователям создать не удалось, но были разработаны и серийно выпускались пульсирующие воздушно-реактивные двигатели. Они ставились на ракеты «Фау-1».

В пульсирующих воздушно-реактивных двигателях топливо сгорало с дозвуковой скоростью. Такое горение называется дефлаграцией. Пульсирующим двигатель называется потому, что в его камеру сгорания топливо и окислитель подавались небольшими порциями через равные промежутки времени.


Карта давления в камере сгорания ротационного детонационного двигателя. A - детонационная волна; B - задний фронт ударной волны; C - зона смешения свежих и старых продуктов горения; D - область заполнения топливной смесью; E - область несдетонировавшей сгоревшей топливной смеси; F - зона расширения со сдетонировавшей сгоревшей топливной смесью

Детонационные двигатели сегодня делятся на два основных типа: импульсные и ротационные. Последние еще называют спиновыми. Принцип работы импульсных двигателей схож с таковым у пульсирующих воздушно-реактивных двигателей. Основное отличие заключается в детонационном горении топливной смеси в камере сгорания.

В ротационных детонационных двигателях используется кольцевая камера сгорания, в которой топливная смесь подается последовательно через радиально расположенные клапаны. В таких силовых установках детонация не затухает - детонационная волна «обегает» кольцевую камеру сгорания, топливная смесь за ней успевает обновиться. Ротационный двигатель впервые начали изучать в СССР в 1950-х годах.

Детонационные двигатели способны работать в широком пределе скоростей полета - от нуля до пяти чисел Маха (0-6,2 тысячи километров в час). Считается, что такие силовые установки могут выдавать большую мощность, потребляя топлива меньше, чем обычные реактивные двигатели. При этом конструкция детонационных двигателей относительно проста: в них отсутствует компрессор и многие движущиеся части.

Все детонационные двигатели, испытывавшиеся до сих пор, разрабатывались для экспериментальных самолетов. Испытанная в России такая силовая установка является первой, предназначенной для установки на ракету. Какой именно тип детонационного двигателя прошел испытания, не уточняется.

Понравилось? Лайкни нас на Facebook