Расчет рулевого управления автомобиля. Динамический расчет. Проектирование и расчет

Нагрузки и напряжения, действующие в деталях рулевого управления можно рассчитать, задавая максимальное усилие на рулевом колесе или определяя это усилие по максимальному сопротивлению повороту управляемых колес автомобиля на месте (что более целесообразно). Эти нагрузки являются статическими.

В рулевом механизме рассчитывают рулевое колесо, рулевой вал и рулевую передачу.

Максимальное усилие на рулевом колесе для рулевых управлений без уси­лителей – = 400 Н; для автомобилей с усилителями –
= 800 Н.

При расчете максимального усилия на рулевом колесе по мак­симальному сопротивлению повороту управляемых колес на ме­сте момент сопротивления повороту можно определить по эмпирической зависимости:

, (13.12)

где –коэффициент сцепления при повороте управ­ляемого колеса на месте;
– нагрузка на колесо;
–давление воздуха в шине.

Усилие на рулевом колесе для поворота на месте рассчитывают по формуле:

, (13.13)

где
– угловое передаточное число рулевого управления;
–радиус рулевого колеса;
– КПД рулевого управления.

По заданному или найденному усилию на рулевом колесе рас­считывают нагрузки и напряжения в деталях рулевого управле­ния.

Спицы рулевого колеса рассчитывают на изгиб, предполагая при этом, что усилие на рулевом колесе распределяется между спицами поровну. Напряжения изгиба спиц определяют по формуле:

, (13.14)

где
–длина спицы;
– диаметр спицы;
–число спиц.

Рулевой вал обычно выполняют трубча­тым. Вал работает на кручение, нагружаясь моментом:

. (13.15)

Напряжения кручения трубчатого вала рассчитывают по формуле:

, (13.16)

где
,
–наружный и внутренний диаметры вала соответственно.

Допустимые напряжения кручения рулевого вала – [
] = 100 МПа.

Рулевой вал проверяют также на жесткость по углу закручива­ния:

, (13.17)

где
–длина вала;
–модуль упругости 2-го рода.

Допустимый угол закручивания – [
] = 5 ÷ 8° на один метр длины вала.

В червячно-роликовой рулевой передаче глобоидный червяк и ролик рассчитывают на сжатие, контактные напряжения в зацеплении при котором определя­ют по формуле:


, (13.18)

где –осевая сила, действующая на червяк;
– площадь кон­такта одного гребня ролика с червяком; –число гребней ролика.

Осевую силу, действующую на червяк, рассчитывают по формуле:

, (13.19)

где – начальный радиус червяка в наименьшем сечении;
– угол подъема винтовой линии червяка.

Площадь контакта одного гребня ролика с червяком можно определить по формуле:

где и –радиусы зацепления ролика и червя­ка соответственно; и
– углы зацепления ролика и червяка.

Допустимые напряжения сжатия – [
] = 2500 ÷ 3500 МПа.

В винтореечной передаче пара «винт – шариковая гайка» проверя­ется на сжатие с учетом радиальной нагрузки на один шарик:

, (13.21)

где
число рабочих витков;
число шариков на одном витке (при полном заполнении канавки);
угол контакта шариков с канавками.

Прочность шарика определяют по контактным напряжениям, рассчитываемым по формуле:

, (13.22)

где
коэффициент кривизны соприкасающихся поверхностей; модуль упругости 1-го рода;
и
диа­метры шарика и канавки соответственно.

Допустимые контактные напряжения [
] = 2500 ÷3500 МПа.

В паре «рейка – сектор» рассчитывают зубья на изгиб и контакт­ные напряжения аналогично цилиндрическому зацеплению. При этом окружное усилие на зубьях сектора (при отсут­ствии или неработающем усилителе) определяют по формуле:

, (13.23)

где – радиус начальной окружности сектора.

Допустимые напряжения – [
] = 300 ÷400 МПа; [
] = 1500 МПа.

Реечную рулевую передачу рассчитывают аналогично.

В рулевом приводе рассчитывают вал рулевой сошки, рулевую сошку, палец рулевой сошки, продольную и по­перечную рулевые тяги, поворотный рычаг и рычаги поворотных кулаков (поворотных цапф).

Вал рулевой сошки рассчитывают на кручение.

При отсутствии усилителя напряжения вала сошки определяют по формуле:


, (13.24)

где – диаметр вала сошки.

Допустимые напряжения – [
] = 300 ÷350 МПа.

Расчет сошки проводят на изгиб и кручение в опасном сечении А -А .

При отсутствии усилителя максимальную силу, действующую на шаровой палец от продольной рулевой тяги, рассчитывают по формуле:

, (13.25)

где –расстояние между центрами головок рулевой сошки.

Напряжения изгиба сошки определяют по формуле:

, (13.26)

где – плечо изгиба сошки;a и b – размеры сечения сошки.

Напряжения кручения сошки определяют по формуле:

, (13.27)

где –плечо кручения.

Допустимые напряжения [
] = 150 ÷200 МПа; [
] = 60 ÷80 МПа.

Шаровой палец сошки рассчитывают на изгиб и срез в опасном сечении Б -Б и на смятие между сухарями продольной рулевой тяги.

Напряжения изгиба пальца сошки рассчитывают по формуле:

, (13.28)

где e – плечо изгиба пальца;
–диаметр пальца в опасном сечении.

Напряжения среза пальца определяют по формуле:

. (13.29)

Напряжения смятия пальца рассчитывают по формуле:

, (13.30)

где – диаметр шаровой головки пальца.

Допустимые напряжения – [
] = 300 ÷400 МПа; [
] = 25 ÷35 МПа; [
] = 25 ÷35 МПа.

Расчет шаровых пальцев продольной и поперечной рулевых тяг проводится аналогично расчету шарового пальца рулевой сошки с учетом действующих нагрузок на каждый палец.

Продольную рулевую тягу рассчитывают на сжатие и про­дольный изгиб.

Напряжения сжатия определяют по формуле:

, (13.31)

где
– площадь поперечного сечения тяги.

При продольном изгибе в тяге возникают критические напря­жения, которые рассчитывают по формуле:

, (13.32)

где –модуль упругости 1-го рода; J – момент инерции трубчатого сечения; – длина тяги по центрам шаровых пальцев.

Запас устойчивости тяги можно определить по формуле:

. (13.33)

Запас устойчивости тяги должен составлять –
=1,5 ÷2,5.

Поперечная рулевая тяга нагружается силой:

, (13.34)

где
и– активные длины поворотного рычага и рычага поворотного кулака соответственно.

Поперечную рулевую тягу рассчитывают на сжатие и продоль­ный изгиб так же, как и продольную рулевую тягу.

Поворотный рычаг рассчитывают на изгиб и кручение.

. (13.35)

. (13.36)

Допустимые напряжения – [
] = 150 ÷ 200 МПа; [
] = 60 ÷ 80 МПа.

Рычаги поворотных кулаков также рассчитывают на изгиб и кручение.

Напряжения изгиба определяют по формуле:

. (13.37)

Напряжения кручения рассчитывают по формуле:

. (13.38)

Таким образом, при отсутствии усилителя в основе прочностного расчета деталей рулевого управления лежит максимальное усилие на рулевом колесе. При наличии усилителя детали рулевого привода, расположенные между усилителем и управляемыми колесами, нагружены, кроме того, усилием, развиваемым усилителем, что необходимо учитывать при проведении расчетов.

Расчет усилителя обычно вклю­чает в себя следующие этапы:

    выбор типа и компоновки усилителя;

    статический расчет – определение сил и перемещений, раз­меров гидроцилиндра и распределительного устройства, центрирующих пружин и площадей реак­тивных камер;

    динамический расчет – определение времени включения уси­лителя, анализ колебаний и устойчивости работы усилителя;

    гидравлический расчет – определение производительности насоса, диаметров трубопроводов и т.п.

В качестве контрольных нагрузок, действующих на детали рулевого управления, могут быть взяты нагрузки, возникающие при наездах управляемых колес на дорожные неровности, а также нагрузки, возникающие в рулевом приводе, например, при торможении из-за неодинаковых тормозных сил на управляемых колесах или при разрыве шины одного из управляемых колес.

Данные дополнительные расчеты позволяют полнее оценить проч­ностные характеристики деталей рулевого управления.


Нагрузки в элементах рулевого управления и рулевого привода определяются на основании следующих двух расчетных случаев:

По заданному расчетному усилию на рулевом колесе;

По максимальному сопротивлению повороту управляемых колес на месте.

При движении автомобиля по дорогам с неровной поверхностью или при торможении с различными коэффициентами сцепления под управляемыми колесами ряд деталей рулевого управления воспринимает динамические нагрузки, которые лимитируют прочность и надежность рулевого управления. Динамическое воздействие учитывается введением коэффициента динамичности к д = 1,5...3,0 .

Расчетное усилие на рулевом колесе для легковых автомобилей P PK = 700 H . Для определения усилия на рулевом колесе по максимальному сопротивлению повороту управляемых колес на месте 166 Рулевое управление
необходимо рассчитать момент сопротивления повороту по следующей эмпирической формуле

M c = (2р о /3)VО ъ к / р ш ,

где р о - коэффициент сцепления при повороте колеса на месте ((р о = 0,9...1,0), G k - нагрузка на управляемое колесо, р ш - давление воздуха в шине.

Усилие на рулевом колесе для поворота на месте

Р ш = Mc /(u a R PK nPp y ),

где u a - угловое передаточное число.

Если вычисленное значение усилия на рулевом колесе превосходит указанное выше условное расчетное усилие, то на автомобиле требуется установка рулевого усилителя. Рулевой вал. В большинстве конструкций его выполняют полым. Рулевой вал нагружается моментом

М РК = P PK R PK .

Напряжение кручения полого вала

т = M PK D/. (8.4)

Допускаемое напряжение [т] = 100 МПа.

Проверяется также угол закрутки рулевогого вала, который допускается в пределах 5...8° на один метр длины вала.

Рулевой механизм. Для механизма, включающего глобоидный червяк и ролик, определяется контактное напряжение в зацеплении

о= Px /(Fn) , (8.5)

P x - осевое усилие, воспринимаемое червяком; F - площадь контакта одного гребня ролика с червяком (сумма площадей двух сегментов, рис. 8.4), и-число гребней ролика.

Осевая сила

Px = Мрк /(r wo tgP),


Материал червяка-цианируемая сталь ЗОХ, 35Х, 40Х, ЗОХН; материал ролика- цементуемая сталь 12ХНЗА, 15ХН.

Допускаемое напряжение [а] = 7...8МПа.

Для винтореечного механизма в звене "винт-шариковая гайка" определяют условную радиальную нагрузку P 0 на один шарик

Р ш = 5P x /(mz COs -$кон) ,

где m - число рабочих витков, z - число шариков на одном витке, 8 кон - угол контакта шариков с канавками (д кон = 45 o).


Следует учитывать, что наибольшие нагрузки в винтовой паре имеют место при неработающем усилителе.

Зубья сектора и рейки рассчитывают на изгиб и контактное напряжение по ГОСТ 21354-87, при этом конусностью зубьев сектора пренебрегают. Окружное усилие на зубьях сектора

Р сек = М РкЬмЪм / r ceK + Р^Щ /4 ,

где r ceK - радиус начальной окружности сектора, р ж - максимальное давление жидкости в усилителе, Е гц - диаметр гидроцилиндра усилителя.

Второе слагаемое применяется в том случае, если усилитель нагружает рейку и сектор, т. е. когда рулевой механизм объединен с гидроцилиндром.

Материал сектора - сталь 18ХГТ, ЗОХ, 40Х, 20ХНЗА, [а и ] = 300...400 МПа, [о сж ] = 1500 МШ.


Вал рулевой сошки. Напряжение кручения вала сошки при наличии усилителя


/(0,2d 3),

Эквивалентное напряжение рассчитывается по третьей теории прочности. Материал сошки: сталь 30, Рис. 8.5. Расчетная схема рулевой сошки 18ХГТ, [<У экв ] = 300...400 МПа.

Шаровой палец сошки. Напряжение изгиба

(8.11)

Материал: сталь 40X, 20XH3A. Допускаемое напряжение = 300...400МПа. Напряжение смятия (давление, которое определяет износостойкость шарового пальца с диаметром шара d„,)

q = 4P oo0 /(nd0), [q] = 25...35 МПа. Рулевое управление

Напряжение среза при площади сечения шарового пальца у основания

о ср = Роо0 /F m , [о ср ] = 25...35 МПа. (8.12)

Продольная тяга (рис.8.6). Сила Р со0 вызывает напряжение сжатия-растяжения и продольного изгиба тяги.

Напряжение сжатия

о <ж = Рсо0 /F, (8.13)

где F - площадь поперечного сечения тяги.

Критическое напряжение при продольном изгибе

Окр =П EJ /(L T F ), (8.14)

где L T - длина прдольной тяги, J = n(D 4 -d 4)/64 - момент инерции поперечного сечения.

Запас устойчивости тяги

8=° кр /о сж =ж 2 EJ /(P com LT ).

Материал: сталь 20, сталь 35.

Поворотный рычаг. Поворотный рычаг нагружается изгибающей силой Р со0 и скручивающим моментом Р сош 1 .

Напряжение изгиба

Ои = Р тш */Wu. (8.15)

Напряжение кручения

^ = P m J/Wk . (8.16)

Материал: сталь 30, сталь 40, 40ХГНМ. [о же ] = 300...400 МПа.

ВВЕдение

Дисциплине «Основы расчета конструкции и агрегатов автомобилей» является продолжением дисциплины «Конструкция автомобилей и тракторов» и целью курсовой работы является закрепление знаний, полученных студентом при изучении этих дисциплин.

Курсовая работа выполняется студентом самостоятельно с использованием учебников, учебных пособий, справочников, ГОСТов, ОСТов и других материалов (монографий, научных журналов и отчетов, интернета).

Курсовой работа включает расчет систем управления автомобиля: рулевого (нечетная цифра шифра студента) или тормозного (четная цифра шифра студента). Прототип автомобиля и исходные данные выбирается по двум последним цифрам шифра студента. Коэффициент сцепления колес с дорогой = 0,9.

По рулевому управлению в графической должны быть: 1) схема поворота автомобиля с указанием радиуса и углов управляемых колес, 2) схема рулевой трапеции с расчетными формулами ее параметров, 3) схема рулевой трапеции в по определению зависимости углов поворота наружного и внутреннего управляемых колес графическим способом, 4) графики зависимостей углов поворота наружного и внутреннего управляемых колес, 5) общая схема рулевого управления, 6) схема по расчету напряжений в рулевой сошке.

Графическая часть по тормозной системе должна содержать: 1) схему тормозного механизма с расчетными формулами тормозного момента, 2) статическую характеристику тормозного механизма, 3) общую схему тормозной системы, 4) схему тормозного крана или главного тормозного цилиндра с гидровакуумным усилителем.

Исходные данные к тяговому, динамическому и экономическому расчету автомобиля.

Расчет рулевого управления автомобиля

Основные технические параметры

Минимальный радиус поворота (по внешнему колесу).

где L - база автомобиля;

Нmax - максимальный угол поворота наружного управляемого колеса.

При заданном значении минимального радиуса и базы автомобиля определяют максимальный угол поворота наружного колеса.

В соответствии со схемой поворота автомобиля (которую необходимо составить) определяют максимальный угол поворота внутреннего колеса

где М - расстояние между осями шкворней.

Геометрические параметры рулевой трапеции.

Для определения геометрических параметров рулевой трапеции используют графические методы (необходимо составить схему в масштабе).

Длину поперечной тяги и боковых сторон трапеции определяют, исходя из следующих соображений.

Пересечение продолжения осей боковых рычагов трапеции находится на расстоянии 0,7L от передней оси, если трапеция задняя, и на расстоянии L, если трапеция передняя (определяется по прототипу).

Оптимальное отношение длины m бокового рычага трапеции к длине n поперечной тяги m = (0,12…0,16)n.

Численные значения m и n можно найти из подобия треугольников

где -расстояние от шкворня до точки пересечения продолжения осей боковых рычагов рулевой трапеции.

По полученным данным выполняют в масштабе графическое построение рулевой трапеции. Затем, построив через равные угловые промежутки положение цапфы внутреннего колеса графически находят соответствующие положения наружного колеса и строят график зависимости, которую называют фактической. Далее по уравнению (2.5.2) строят теоретическую зависимость. Если максимальная разница между теоретическим и фактическим значениями не превышает 1,50 при максимальном угле поворота внутреннего колеса, то считается, что трапеция подобрана правильно.

Угловое передаточное число рулевого управления-это отношение элементарного угла поворота рулевого колеса к полусумме элементарных углов поворота наружного и внутреннего колес. Оно переменно и зависит от передаточных чисел рулевого механизма Uрм и рулевого привода U рп

Передаточное число рулевого механизма -это отношение элементарного угла поворота рулевого колеса к элементарному углу поворота вала сошки. Максимальное значение должно соответствовать нейтральному положению рулевого колеса для легковых автомобилей и крайним положением рулевого колеса для грузовых автомобилей без рулевых усилителей.

Передаточное число рулевого привода -это отношение плеч рычагов привода. Поскольку положение рычагов в процессе поворота рулевого колеса изменяется, то передаточное число рулевого привода переменно: Uрп=0,85…2,0.

Силовое передаточное число рулевого управления

где -момент, приложенный к рулевому колесу;

Момент сопротивления повороту управляемых колес.

При проектировании автомобилей ограничивается как минимальное (60Н), так и максимальное (120Н) усилие.

По ГОСТ 21398-75 для поворота на месте на бетонной поверхности усилие не должно превышать для легковых автомобилей 400 Н, для грузовых автомобилей 700 Н.

Момент сопротивления повороту управляемых колес рассчитывают по эмпирической формуле:

где -коэффициент сцепления при повороте колеса на месте (=0,9…1,0);

Рш -давление воздуха в шине, МПа.

Параметры рулевого колеса.

Максимальный угол поворота рулевого колеса в каждую сторону находится в пределах 540…10800 (1,5…3 оборота).

Диаметр рулевого колеса нормирован: для легковых и грузовых малой грузоподъемности автомобилей он составляет 380…425 мм, а для грузовых автомобилей 440…550 мм.

Усилие на рулевом колесе для поворота на месте

Рр.к =Мс / (), (1.8)

где Rpк -радиус рулевого колеса;

КПД рулевого механизма.

КПД рулевого механизма. Прямой КПД -при передаче усилия от рулевого колеса к сошке

рм = 1 - (Мтр1 / Мр.к) (1.9)

где Мтр1 -момент трения рулевого механизма, приведенный к рулевому колесу.

Обратный КПД характеризует передачу усилия от сошки к рулевому колесу:

рм = 1 - (Мтр2 / Мв.с) (1.10)

где Мтр2 - момент трения рулевого механизма, приведенный к валу сошки;

Мв.с -момент на валу сошки, подведенный от управляемых колес.

КПД как прямой, так и обратный зависят от конструкции рулевого механизма и имеют следующие значения:

рм =0,6…0,95; рм =0,55…0,85

А. А. Енаев

Автомобили.

Проектирование и расчет

рулевых управлений

Учебно-методическое пособие

Братск 2004


2. НАЗНАЧЕНИЕ, ТРЕБОВАНИЯ И КЛАССИФИКАЦИЯ…

3. ВЫБОР СПОСОБА ПОВОРОТА АВТОМОБИЛЕЙ………

4. ВЫБОР СХЕМЫ РУЛЕВОГО УПРАВЛЕНИЯ…………….

5. РУЛЕВЫЕ МЕХАНИЗМЫ…………………………………..

5.1. Назначение, требования, классификация……………...

5.2. Оценочные параметры рулевого механизма…………..

5.3. Выбор типа рулевого механизма……………………….

5.4. Материалы, используемые для изготовления рулевых механизмов…………………………………………………...

6. РУЛЕВЫЕ ПРИВОДЫ……………………………………….

6.1. Назначение, требования, классификация……………...

6.2. Оценочные параметры рулевого привода……………..

6.3. Выбор типа рулевого привода………………………….

6.4. Материалы, используемые для изготовления рулевых приводов………………………………………………………

7. УСИЛИТЕЛИ РУЛЕВОГО УПРАВЛЕНИЯ………………..

7.1. Назначение, требования, классификация……………...

7.2. Оценочные параметры усилителя рулевого управления…………………………………………………………….

7.3. Выбор схемы компоновки усилителей………………...

7.4. Насосы усилителей……………………………………...

7.5. Материалы, используемые для изготовления усилителей насосов…………………………………………………...

8. РАСЧЕТ РУЛЕВОГО УПРАВЛЕНИЯ……………………...

8.1. Кинематический расчет рулевого привода…………….

8.2. Передаточное число рулевого управления…………….

9. СИЛОВОЙ РАСЧЕТ РУЛЕВОГО УПРАВЛЕНИЯ………...

9.1. Усилие на рулевом колесе………………………………

9.2. Усилие, развиваемое цилиндром усилителя…………..

9.3. Усилие на колесах при торможении…………………...

9.4. Усилия на поперечной и продольной тягах……………

10. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ УСИЛИТЕЛЯ……………

11. ПРОЧНОСТНОЙ РАСЧЕТ РУЛЕВОГО УПРАВЛЕНИЯ..

11.1. Расчет рулевых механизмов…………………………...

11.2. Расчеты рулевых приводов……………………………

Проектирование и расчет рулевых управлений является одной из составных частей курсового проекта по дисциплине "Автомобили".

На первом этапе курсового проектирования необходимо выполнить тяговый расчет и исследовать эксплуатационные свойства автомобиля, используя методические указания «Автомобили. Общие положения. Тяговый расчет» и затем приступить, в соответствии с заданием, к проектированию и расчету агрегата или системы шасси автомобиля.

При проектировании и расчете рулевых управлений необходимо подобрать рекомендуемую литературу, внимательно ознакомиться с данным пособием. Последовательность работы по проектированию и расчету рулевых управлений такова:

1. Выбрать способ поворота автомобиля, схему рулевого управления, тип рулевого механизма, схему компоновки усилителя (если он необходим).

2. Выполнить кинематический расчет, силовой расчет, гидравлический расчет усилителя (если в рулевом управлении предусматривается установка усилителя).

3. Выбрать размеры деталей и выполнить прочностной расчет.

В настоящем учебно-методическом пособии подробно изложено, как выполнить все эти виды работ.

2. НАЗНАЧЕНИЕ, ТРЕБОВАНИЯ И КЛАССИФИКАЦИЯ

Рулевое управление – это совокупность устройств, служащих для поворота управляемых колес автомобиля при воздействии водителя на рулевое колесо и состоящее из рулевого механизма и привода (рис. 1).

Рулевой механизм – это часть рулевого управления от рулевого колеса до рулевой сошки, а рулевой привод включает детали от рулевой сошки до поворотной цапфы.

Рис. 1. Схема рулевого управления:

1 – рулевое колесо; 2 – рулевой вал; 3 – рулевая колонка; 4 – редуктор; 5 – рулевая сошка; 6 – продольная рулевая тяга; 7 – поворотная цапфа; 8 – рычаг поворотной цапфы; 9 – боковой рычаг; 10 – поперечная тяга

К рулевому управлению предъявляются следующие требования:

1) обеспечение высокой маневренности автотранспортных средств, при которой возможны крутые и быстрые повороты на сравнительно ограниченных площадях;

2) легкость управления, оцениваемая величиной усилия, прикладываемого к рулевому колесу.

Для легковых автомобилей без усилителя при движении это усилие составляет 50...100 Н, а с усилителем – 10...20 Н. Для грузовых автомобилей усилие на рулевом колесе регламентируется: 250...500 Н – для рулевого управления без усилителя; 120 Н – для рулевого управления с усилителем;

3) качение управляемых колес с минимальным боковым уводом и скольжением при повороте автомобиля;

4) точность следящего действия, в первую очередь кинематического, при котором любому заданному положению рулевого колеса будет соответствовать вполне определенная заранее рассчитанная кривизна поворота;

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Механизмы управления

1. Рулевое управление

Назначение рулевого управления и схема поворота автомобиля

Рулевое управление служит для изменения направления движения автомобиля поворотом передних управляемых колес. Оно состоит из рулевого механизма и рулевого привода. На грузовых автомобилях большой грузоподъемности в рулевом управлении применяют усилитель, который облегчает управление автомобилем, уменьшает толчки на рулевое колесо и повышает безопасность движения.

Схема поворота автомобиля

Рулевой механизм служит для увеличения и передачи на рулевой привод усилия, прилагаемого водителем к рулевому колесу. Рулевой механизм преобразует вращение рулевого колеса в поступательное перемещение тяг привода, вызывающее поворот управляемых колес. При этом усилие, передаваемое водителем, от рулевого колеса к поворачиваемым колесам, возрастает во много раз.

Рулевой привод совместно с рулевым механизмом передает управляющее усилие от водителя непосредственно к колесам и обеспечивает этим поворот управляемых колес на задаваемый угол.

Чтобы совершить поворот без бокового скольжения колес, все они должны катиться по дугам разной длины, описанным из центра поворота О см. рис. При этом передние управляемые колеса должны поворачиваться на разные углы. Внутреннее по отношению к центру поворота колесо должно поворачиваться на угол альфа-В, наружное - на меньший угол альфа-Н. Это обеспечивается соединением тяг и рычагов рулевого привода в форме трапеции. Основанием трапеции служит балка 1 переднего моста автомобиля, боковыми сторонами являются левый 4 и правый 2 поворотные рычаги, а вершину трапеции образует поперечная тяга 3, которая соединяется с рычагами шарнирно. К рычагам 4 и 2 жестко присоединены поворотные цапфы 5 колес.

Один из поворотных рычагов, чаще всего левый рычаг 4, имеет связь с рулевым механизмом через продольную тягу 6. Таким образом, при приведении в действие рулевого механизма продольная тяга, перемещаясь вперед или назад, вызывает поворот обоих колес на разные углы в соответствии со схемой поворота.

механизм управление рулевой автомобиль

Схемы рулевого управления

Расположение и взаимодействие деталей рулевого управления, не имеющего усилителя, можно рассмотреть на схеме (см. рисунок). Здесь рулевой механизм состоит из рулевого колеса 3, рулевого вала 2 и рулевой передачи 1, образованной зацеплением червячной шестерни (червяка) с зубчатым стопором, на вал которого крепится сошка 9 рулевого привода. Сошка и все остальные детали рулевого управления: продольная тяга 8, верхний рычаг левой поворотной цапфы 7, нижние рычаги 5 левой и правой поворотных цапф, поперечная тяга 6 составляют рулевой привод.

Поворот управляемых колес происходит при вращении рулевого колеса 3, которое через вал 2 передает вращение рулевой передаче 1. При этом червяк передачи, находящийся в зацеплении с сектором, начинает перемещать сектор вверх или вниз по своей нарезке. Вал сектора приходит во вращение и отклоняет сошку 9, которая своим верхним концом насажена на выступающую часть вала сектора. Отклонение сошки передается продольной тяге 8, которая перемещается вдоль своей оси. Продольная тяга 8 связана через верхний рычаг 7 с поворотной цапфой 4, поэтому ее перемещение вызывает поворот левой поворотной цапфы. От нее усилие поворота через нижние рычаги 5 и поперечную тягу 6 передается правой цапфе. Таким образом происходит поворот обоих колес.

Управляемые колеса поворачиваются рулевым управлением на ограниченный угол, равный 28-35°. Ограничение вводится для того, чтобы исключить при повороте задевание колесами деталей подвески или кузова автомобиля.

Конструкция рулевого управления очень сильно зависит от типа подвески управляемых колес. При зависимой подвеске передних колес в принципе сохраняется схема рулевого управления, приведенная на (рис. а), при независимой подвеске (рис. 6) рулевой привод несколько усложняется.

2. Основные типы рулевых механизмов и приводов

Рулевой механизм

Он обеспечивает поворот управляемых колес с небольшим усилием на рулевом колесе. Это может быть достигнуто за счет увеличения передаточного числа рулевого механизма. Однако передаточное число ограничено количеством оборотов рулевого колеса. Если выбрать передаточное число с количеством оборотов рулевого колеса больше 2-3, то существенно увеличивается время, требуемое на поворот автомобиля, а это недопустимо по условиям движения. Поэтому передаточное число в рулевых механизмах ограничивают в пределах 20-30, а для уменьшения усилия на рулевом колесе в рулевой механизм или привод встраивают усилитель.

Ограничение передаточного числа рулевого механизма также связано со свойством обратимости, т. е. способностью передавать обратное вращение через механизм на рулевое колесо. При больших передаточных числах увеличивается трение в зацеплениях механизма, свойство обратимости пропадает и самовозврат управляемых колес после поворота в прямолинейное положение оказывается невозможным.

Рулевые механизмы в зависимости от типа рулевой передачи разделяют на:

· червячные,

· винтовые,

· шестеренчатые.

Рулевой механизм с передачей типа червяк - ролик имеет в качестве ведущего звена червяк, закрепленный на рулевом валу, а ролик установлен на роликовом подшипнике на одном валу с сошкой. Чтобы сделать полное зацепление при большом угле поворота червяка, нарезку червяка выполняют по дуге окружности - глобоиде. Такой червяк называют глобоидным.

В винтовом механизме вращение винта, связанного с рулевым валом, передается гайке, которая заканчивается рейкой, зацепленной с зубчатым сектором, а сектор установлен на одном валу с сошкой. Такой рулевой механизм образован рулевой передачей типа винт-гайка-сектор.

В шестеренчатых рулевых механизмах рулевая передача образуется цилиндрическими или коническими шестернями, к ним же относят передачу типа шестерня-рейка. В последних цилиндрическая шестерня связана с рулевым валом, а рейка, зацепленная с зубьями шестерни, выполняет роль поперечной тяги. Реечные передачи и передачи типа червяк-ролик преимущественно применяют на легковых автомобилях, так как обеспечивают сравнительно небольшое передаточное число. Для грузовых автомобилей используют рулевые передачи типа червяк-сектор и винт-гайка-сектор, снабженные либо встроенными в механизм усилителями, либо усилителями, вынесенными в рулевой привод.

Рулевой привод

Рулевой привод предназначен для передачи усилия от рулевого механизма на управляемые колеса, обеспечивая при этом их поворот на неодинаковые углы. Конструкции рулевого привода различаются расположением рычагов и тяг, составляющих рулевую трапецию, по отношению к передней оси. Если рулевая трапеция находится впереди передней оси, то такая конструкция рулевого привода называется передней рулевой трапецией, при заднем расположении - задней трапецией. Большое влияние на конструктивное исполнение и схему рулевой трапеции оказывает конструкция подвески передних колес.

При зависимой подвеске рулевой привод имеет более простую конструкцию, так как состоит из минимума деталей. Поперечная рулевая тяга в этом случае сделана цельной, а сошка качается в плоскости, параллельной продольной оси автомобиля. Можно сделать привод и с сошкой, качающейся в плоскости, параллельной переднему мосту. Тогда продольная тяга будет отсутствовать, а усилие от сошки передается прямо на две поперечные тяги, связанные с цапфами колес.

При независимой подвеске передних колес схема рулевого привода конструктивно сложнее. В этом случае появляются дополнительные детали привода, которых нет в схеме с зависимой подвеской колес. Изменяется конструкция поперечной рулевой тяги. Она сделана расчлененной, состоящей из трех частей: основной поперечной тяги 4 и двух боковых тяг - левой 3 и правой 6. Для опоры основной тяги 4 служит маятниковый рычаг 5, который по форме и размерам соответствует сошке 1. Соединение боковых поперечных тяг с поворотными рычагами 2 цапф и с основной поперечной тягой выполнено с помощью шарниров, которые допускают независимые перемещения колес в вертикальной плоскости. Рассмотренная схема рулевого привода применяется главным образом на легковых автомобилях.

Рулевой привод, являясь частью рулевого управления автомобиля, обеспечивает не только возможность поворота управляемых колес, но и допускает колебания колес при наезде ими на неровности дороги. При этом детали привода получают относительные перемещения в вертикальной и горизонтальной плоскостях и на повороте передают усилия, поворачивающие колеса. Соединение деталей при любой схеме привода производят с помощью шарниров шаровых либо цилиндрических.

3. Устройство и работа рулевых механизмов

Рулевой механизм с передачей типа червяк - ролик

Он широко распространен на легковых и грузовых автомобилях. Основными деталями рулевого механизма являются рулевое колесо 4, рулевой вал 5, установленный в рулевой колонке 3 и соединенный с глобоидным червяком 1. Червяк установлен в картере 6 рулевой передачи на двух конических подшипниках 2 и зацеплен с трехгребневым роликом 7, который вращается на шарикоподшипниках на оси. Ось ролика закреплена в вильчатом кривошипе вала 8 сошки, опирающемся на втулку и роликовый подшипник в картере 6. Зацепление червяка и ролика регулируют болтом 9, в паз которого вставлен ступенчатый хвостовик вала сошки. Фиксация заданного зазора в зацеплении червяка с роликом производится фигурной шайбой со штифтом и гайкой.

Рулевой механизм автомобиля ГАЗ-53А

Картер 6 рулевой передачи закреплен болтами к лонжерону рамы. Верхний конец рулевого вала имеет конические шлицы, на которые посажено и закреплено гайкой рулевое колесо.

Рулевой механизм с передачей типа винт - гайк а - рейка - сектор с усилителем

Его применяют в рулевом управлении автомобиля ЗИЛ-130. Усилитель рулевого управления объединен конструктивно с рулевой передачей в один агрегат и имеет гидропривод от насоса 2, который приводится в действие клиновым ремнем от шкива коленчатого вала. Рулевая колонка 4 соединена с рулевым механизмом 1 через короткий карданный вал 3, так как оси рулевого вала и рулевого механизма не совпадают. Это сделано для уменьшения габаритных размеров рулевого управления.

Рулевой механизм автомобиля

На следующем рисунке показано устройство рулевого механизма. Основной частью его является картер 1, имеющий форму цилиндра. Внутри цилиндра размещены поршень - рейка 10 с жестко закрепленной в нем гайкой 3. Гайка имеет внутреннюю нарезку в виде полукруглой канавки, куда заложены шарики 4. Посредством шариков гайка зацеплена с винтом 2, который, в свою очередь, соединен с рулевым валом 5. В верхней части картера к нему крепится корпус 6 клапана управления гидроусилителем. Управляющим элементом в клапане является золотник 7. Исполнительным механизмом гидроусилителя служит поршень - рейка 10, уплотненный в цилиндре картера с помощью поршневых колец. Рейка поршня соединена нарезкой с зубчатым сектором 9 вала 8 сошки.

Устройство рулевого механизма с встроенным гидроусилителем

Вращение рулевого вала преобразуется передачей рулевого механизма в перемещение гайки - поршня по винту. При этом зубья рейки поворачивают сектор и вал с закрепленной на нем сошкой, благодаря чему происходит поворот управляемых колес.

При работающем двигателе насос гидроусилителя подает масло под давлением в гидроусилитель, вследствие чего при совершении поворота усилитель развивает дополнительное усилие, прикладываемое к рулевому приводу. Принцип действия усилителя основан на использовании давления масла на торцы поршня - рейки, которое создает дополнительную силу, передвигающую поршень и облегчающую поворот управляемых колес. [ 1 ]

Схема поворота автомобиля

Одна из самых важных систем ТС с точки зрения безопасности движения -- система рулевого управления, обеспечивающая его движение (поворот) в заданном направлении. В зависимости от конструктивных особенностей колесных ТС различают три способа поворота:

При помощи поворота управляемых колес одной, нескольких или всех осей

Созданием разности скоростей неуправляемых колес правого и левого бортов машин (поворот «погусеничному»)

Взаимным принудительным поворотом звеньев щарнирно-сочлененного ТС

Много- или двухзвенные колесные ТС (автопоезда), состоящие из колесного тягача, прицепа (прицепов) или полуприцепа (полуприцепов), осуществляют поворот при помощи управляемых колес только тягача или тягача и прицепного (полуприцепного) звена.

Наиболее широкое распространение получили схемы колесных машин с поворотными (управляемыми) колесами.

При увеличении числа пар управляемых колес уменьшается минимально возможный радиус поворота машины, т. е, улучшаются маневренные качества ТС. Однако стремление улучшить маневренность за счет применения передних и задних управляемых колес существенно усложняет конструкцию привода управления ими. Максимальный угол повороту управляемых колес обычно не превышает 35 …40°.

Схемы поворота двух-, трех- и четырехосных колесных машин с управляемыми колесами

Рис. Схемы поворота двух-, трех- и четырехосных колесных машин с управляемыми колесами: а, б -- передними; в -- передними и задними; е, ж -- первой и второй осей; з -- всех осей

Схемы поворота колесной машины с неуправляемыми колесами

Рис. Схемы поворота колесной машины с неуправляемыми колесами:

а -- с большим радиусом поворота; б -- с нулевым радиусом; О -- центр поворота; V1, V2 -- скорости движения отстающего и забегающего бортов машины

Поворотом управляемых колес ТС водитель заставляет его передвигаться по траектории заданной кривизны в соответствии с углами поворота колес. Чем больше угол их поворота относительно продольной оси машины, тем меньше радиус поворота ТС.

Схема поворота «по-гусеничному» принципу используется сравнительно редко и в основном на специальных ТС. Примером может служить колесный тягач с неповоротными колесами и трансмиссией, обеспечивающей поворот тягача практически вокруг его геометрического центра. Такую же схему поворота имеет отечественный луноход, имеющий электромотор-колеса с формулой 8Ч8. Поворот подобных ТС осуществляется при неодинаковой скорости колес разных бортов машины. Такое управление поворотом наиболее просто обеспечить прекращением подачи вращающего момента на отстающий при повороте борт машины, скорость колес которого уменьшается вследствие их подтормаживания. Чем больше разность скоростей забегающего V2, т.е. внешнего по отношению к центру поворота (точка О), и отстающего V1(внутреннего по отношению к центру поворота) бортов машины, тем меньше радиус ее криволинейного движения. В идеальном случае, если скорости всех колес обоих бортов будут равны, но направлены в противоположные стороны (V2 = -V1), мы получим нулевой радиус поворота, т. е. машина будет поворачиваться вокруг своего геометрического центра.

Основными недостатками ТС с неуправляемыми колесами являются повышенный расход мощности на совершение поворота и больший износ шин по сравнению с автомобилями, имеющими управляемые колеса.

Шарнирносочлененные схемы поворота ТС для инженерных тягачей. Эти машины обладают хорошей маневренностью (минимальный радиус поворота у них меньше, чем у обычных автомобилей с такой же базой и лучшей приспособляемостью к неровностям дороги (из-за наличия шарниров в сцепном устройстве тягача и прицепного звена), а также обеспечивают возможность использования колес большого диаметра, что улучшает проходимость этих ТС.

Размещено на Allbest.ru

Подобные документы

    Обеспечение движения автомобиля в заданном водителем направлении как основное назначение рулевого управления автомобиля Камаз-5311. Классификация рулевых механизмов. Устройство рулевого управления, принцип его работы. Техническое обслуживание и ремонт.

    курсовая работа , добавлен 14.07.2016

    Обзор схем и конструкций рулевых управлений автомобилей. Описание работы, регулировок и технических характеристик проектируемого узла. Кинематический, гидравлический и силовой расчет рулевого управления. Прочностные расчеты элементов рулевого управления.

    курсовая работа , добавлен 25.12.2011

    Основная причина пробок и лучший вариант избежать городской пробки. Особенности управления автомобилем в пробке. Перестроение для поворота в сплошном потоке. Объезд возникшего препятствия. Проезд регулируемых перекрестков. Выезд на главную дорогу.

    реферат , добавлен 06.02.2008

    Расчет рулевого управления автомобиля. Силовое передаточное число рулевого управления. Момент сопротивления повороту управляемых колес. Расчет конструкции рулевых механизмов. Расчет тормозных механизмов, усилителей тормозных гидроприводов автомобиля.

    методичка , добавлен 19.01.2015

    Анализ рабочих процессов агрегатов (сцепления, подвески), рулевого и тормозного управления автомобиля. Кинематический и прочностный расчет механизмов и деталей автомобиля Москвич-2140. Определение показателей плавности хода автомобиля (подвеска).

    курсовая работа , добавлен 01.03.2011

    Устройство рулевого привода грузового автомобиля. Внешний контроль технического состояния деталей привода, оценка работы ограничителей поворота. Регулировка зазоров в продольной тяге. Перечень возможных неисправностей, связанных с рулевым приводом.

    курсовая работа , добавлен 22.05.2013

    Общее устройство автомобиля и назначение его основных частей. Рабочий цикл двигателя, параметры его работы и устройство механизмов и систем. Агрегаты силовой передачи, ходовой части и подвески, электрооборудования, рулевого управления, тормозной системы.

    реферат , добавлен 17.11.2009

    Раздаточная и дополнительная коробки передач. Понижающая передача в раздаточной коробке автомобиля. Назначение и типы рулевых механизмов. Схема привода рабочей тормозной системы автомобиля ГАЗ-3307. Назначение и общее устройство прицепов-тяжеловозов.

    контрольная работа , добавлен 03.03.2011

    Технологический процесс ремонта рулевого управления автомобиля ВАЗ 2104. Увеличенный свободный ход рулевого колеса. Измеритель суммарного люфта рулевого управления. Стенд развал-схождение, его тестирование. Оборудование и инструмент для ремонта.

    дипломная работа , добавлен 25.12.2014

    Назначение и общая характеристика рулевого управления автомобиля КамАЗ–5320 и колесного трактора МТЗ–80 с гидроусилителем. Основные регулировки рулевого управления. Возможные неисправности и техническое обслуживание. Насос гидравлического усилителя.

Понравилось? Лайкни нас на Facebook