Эффективность работы теплового двигателя не зависит. Тема кпд и топливной эффективности

Электродвигатели появились достаточно давно, но большой интерес к ним возник тогда, когда они стали представлять собой альтернативу двигателям внутреннего сгорания. Особо интересен вопрос КПД электродвигателя, который является одной из главных его характеристик.

Каждая система обладает каким-либо который характеризует эффективность ее работы в целом. То есть он определяет, насколько хорошо система или устройство отдает или преобразовывает энергию. По значению КПД величины не имеет, и чаще всего оно представляется в процентном соотношении или числе от нуля до единицы.

Параметры КПД в электродвигателях

Основная задача электрического двигателя сводится к преобразованию электрической энергии в механическую. КПД определяет эффективность выполнения данной функции. Формула КПД электродвигателя выглядит следующим образом:

  • n = p2/p1

В данной формуле p1 - это подведенная электрическая мощность, p2 - полезная механическая мощность, которая вырабатывается непосредственно двигателем. Электрическая мощность определяется формулой: p1=UI (напряжение умноженное на силу тока), а значение механической мощности по формуле P=A/t (отношение работы к единице времени). Так выглядит расчет КПД электродвигателя. Однако это самая простая его часть. В зависимости от предназначения двигателя и сферы его применения, расчет будет отличаться и учитывать многие другие параметры. На самом деле формула КПД электродвигателя включает намного больше переменных. Выше был приведен самый простой пример.

Снижение КПД

Механический КПД электродвигателя должен обязательно учитываться при выборе мотора. Очень большую роль играют потери, которые связаны с нагревом двигателя, снижением токами. Чаще всего падение КПД связано с выделением тепла, которое естественным образом происходит при работе двигателя. Причины выделения теплоты могут быть разными: двигатель может нагреваться в процессе трения, а также по электрическим и даже магнитным причинам. В качестве самого простого примера можно привести ситуацию, когда на электрическую энергию было потрачено 1 000 рублей, а работы было произведено на 700 рублей. В таком случае коэффициент полезного действия будет равен 70%.

Для охлаждения электрических двигателей применяются вентиляторы, которые прогоняют воздух через созданные зазоры. В зависимости от класса двигателей, нагрев может осуществляться до определенной температуры. Например, двигатели класса A могут нагреваться до 85-90 градусов, класса B - до 110 градусов. В том случае, когда температура превышает допустимую границу, это может свидетельствовать о замыкании статора.

Средний КПД электрических двигателей

Стоит отметить, что КПД электродвигателя постоянного тока (и переменного тоже) изменяется в зависимости от нагрузки:

  1. При холостом ходе КПД равен 0%.
  2. При нагрузке 25% КПД равен 83%.
  3. При нагрузке 50% КПД равен 87%.
  4. При нагрузке 75% КПД равен 88%.
  5. При нагрузке 100% КПД равен 87%.

Одна из причин падения коэффициента полезного действия - асимметрия токов, когда подается разное напряжение на каждой из трех фаз. Если, к примеру, на первой фазе будет напряжение 410 В, на второй - 403 В, а на третьей - 390 В, то среднее значение будет равно 401 В. Асимметрия в данном случае будет равна разнице между максимальным и минимальным напряжением на фазах (410-390), то есть 20 В. Формула КПД электродвигателя для расчета потерь будет иметь вид в нашей ситуации: 20/401*100 = 4.98%. Это значит, что мы теряем 5% КПД при работе из-за разности напряжений на фазах.

Общие потери и падение КПД

Негативных факторов, которые оказывают влияние на падение КПД электродвигателя, очень много. Есть определенные методики, позволяющие их определять. К примеру, можно определить, есть ли зазор, через который частично передается мощность из сети к статору и далее - на ротор.

Потери в стартере также имеют место, и они состоят из нескольких значений. В первую очередь это могут быть потери, имеющие отношение к вихревым токам и перемагничиванию сердечников статора.

Если двигатель асинхронный, то имеют место дополнительные потери из-за зубцов в роторе и статоре. Также в отдельных узлах двигателя могут возникать вихревые токи. Все это в сумме снижает КПД электродвигателя на 0,5%. В асинхронных моторах учитываются все потери, которые могут возникать при работе. Поэтому диапазон коэффициента полезного действия может варьироваться от 80 до 90%.

Автомобильные двигатели

История развития электрических двигателей начинается с момента открытия Согласно ему, индукционный ток всегда движется таким образом, чтобы противодействовать вызывающей его причине. Именно эта теория легла в основу создания первого электрического двигателя.

Современные модели основаны на этом же принципе, однако кардинально отличаются от первых экземпляров. Электрические моторы стали намного мощнее, компактнее, но самое главное - их КПД значительно увеличился. Мы уже писали выше о том, какой КПД электродвигателя, и по сравнению с двигателем внутреннего сгорания это потрясающий результат. К примеру, максимальный КПД двигателя внутреннего сгорания достигает 45%.

Преимущества электрического двигателя

Высокий КПД - это главное достоинство подобного мотора. И если двигатель внутреннего сгорания тратит более 50% энергии на нагрев, то в электрическом моторе на нагрев уходит небольшая часть энергии.

Вторым преимуществом является небольшой вес и компактные размеры. Например, компания Yasa Motors создала мотор с весом всего 25 кг. Он способен выдавать 650 Нм, что очень приличный результат. Также такие моторы долговечные, не нуждаются в коробке передач. Многие владельцы электрокаров говорят об экономичности электрических двигателей, что логично в некоторой степени. Ведь при работе электромотор не выделяет никаких продуктов сгорания. Однако многие водители забывают о том, что для производства электроэнергии необходимо использовать уголь, газ или обогащенный уран. Все эти элементы загрязняют окружающую среду, поэтому экологичность электродвигателей - это очень спорный вопрос. Да, они не загрязняют воздух в процессе работы. За них это делают электростанции при производстве электроэнергии.

Повышение эффективности электродвигателей

Электрические двигатели обладают некоторыми недостатками, которые плохо влияют на эффективность работы. Это слабый пусковой момент, высокий пусковой ток и несогласованность механического момента вала с механической нагрузкой. Это приводит к тому, что КПД устройства снижается.

Для повышения эффективности стараются обеспечить нагрузку двигателя до 75% и выше и увеличивать коэффициенты мощности. Также есть специальные приборы для регулирования частоты подаваемого тока и напряжения, что тоже приводит к повышению эффективности и росту КПД.

Одним из самых популярных приборов для увеличения КПД электродвигателя является устройство плавного пуска, которое ограничивает скорость роста пускового тока. Также уместно использовать и изменения скорости вращения мотора путем изменения частоты напряжения. Это приводит к снижению расхода электроэнергии и обеспечивает плавный высокую точность регулировки. Также увеличивается пусковой момент, а при переменной нагрузке стабилизируется скорость вращения. В результате эффективность электродвигателя повышается.

Максимальный КПД электродвигателя

В зависимости от типа конструкции, в электрических двигателях может варьироваться от 10 до 99%. Все зависит от того, какой именно это будет двигатель. Например, КПД электродвигателя насоса поршневого типа составляет 70-90%. Конечный результат зависит от производителя, строения устройства и т. д. То же самое можно сказать и про КПД электродвигателя подъемного крана. Если он равен 90%, то это значит, что 90% потребляемой электроэнергии пойдет на выполнение механической работы, остальные 10% - на нагрев деталей. Все же есть наиболее удачные модели электродвигателей, коэффициент полезного действия которых приближается к 100%, но не равен этому значению.

Возможен ли КПД свыше 100%?

Ни для кого не секрет, что электрические двигатели, КПД которых превышает 100%, не могут существовать в природе, так как это противоречит основному закону о сохранении энергии. Дело в том, что энергия не может взяться из ниоткуда и точно так же исчезнуть. Любой двигатель нуждается в источнике энергии: бензине, электричестве. Однако бензин не вечен, как и электроэнергия, ведь их запасы приходится пополнять. Но если бы существовал источник энергии, который не нуждался в пополнении, то вполне возможно было бы создать мотор с КПД свыше 100%. Российский изобретать Владимир Чернышов показал описание двигателя, который основан на постоянном магните, и его КПД, как уверяет сам изобретатель, составляет более 100%.

Гидроэлектростанция как пример вечного двигателя

Для примера возьмем гидроэлектростанцию, где энергия вырабатывается за счет падения с большой высоты воды. Вода вращает турбину, и та производит электричество. Падение воды осуществляется под действием гравитации Земли. И хотя работа по производству электроэнергии совершается, гравитация Земли не становится слабее, то есть сила притяжения не уменьшается. Далее вода под действием солнечных лучей испаряется и снова поступает в водохранилище. На этом цикл завершается. В результате электроэнергия выработана, затраты на ее производство возобновлены.

Конечно, можно сказать, что Солнце не вечно, это так, но пару-тройку миллиардов лет оно протянет. Что касается гравитации, то она постоянно совершает работу, вытягивая влагу из атмосферы. Если сильно обобщить, то гидроэлектростанция - это двигатель, который преобразует механическую энергию в электрическую, и его КПД составляет более 100%. Это дает понять, что искать пути создания электродвигателя, КПД которого может быть более 100%, прекращать не стоит. Ведь не только гравитацию можно использовать в качестве неисчерпаемого источника энергии.

Постоянные магниты как источники энергии для двигателей

Второй интересный источник - постоянный магнит, который ниоткуда не получает энергию, а магнитное поле не расходуется даже при совершении работы. Например, если магнит что-либо притянет к себе, то он выполнит работу, а его магнитное поле слабее не станет. Это свойство уже не раз пытались использовать для создания так называемого вечного двигателя, но пока что ничего более-менее нормального из этого не получилось. Любой механизм износится рано или поздно, но сам источник, которым является постоянный магнит, практически вечен.

Впрочем, есть специалисты, которые утверждают, что со временем постоянные магниты теряют свои силы в результате старения. Это неправда, но даже если бы и было правдой, то вернуть его к жизни можно было бы всего лишь одним электромагнитным импульсом. Двигатель, который бы требовал перезарядку раз в 10-20 лет, хоть и не может претендовать на роль вечного, но очень близко к этому подходит.

Уже было много попыток создать вечный двигатель на базе постоянных магнитов. Пока что не было удачных решений, к сожалению. Но учитывая тот факт, что спрос на такие двигатели есть (его просто не может не быть), вполне возможно, что в скором будущем мы увидим что-то, что очень близко подойдет к модели вечного мотора, который будет работать на возобновляемой энергии.

Заключение

КПД электродвигателя - это самый важный параметр, который определяет эффективность работы того или иного мотора. Чем выше КПД, тем лучше мотор. В двигателе с КПД 95% почти вся затрачиваемая энергия уходит на выполнение работы и только 5% расходуется не по нужде (например, на нагрев запчастей). Современные дизельные двигатели могут достигать значения КПД 45%, и это считается классным результатом. КПД бензиновых двигателей и того меньше.

Энциклопедичный YouTube

  • 1 / 5

    Математически определение КПД может быть записано в виде:

    η = A Q , {\displaystyle \eta ={\frac {A}{Q}},}

    где А - полезная работа (энергия), а Q - затраченная энергия.

    Если КПД выражается в процентах, то он вычисляется по формуле:

    η = A Q × 100 % {\displaystyle \eta ={\frac {A}{Q}}\times 100\%} ε X = Q X / A {\displaystyle \varepsilon _{\mathrm {X} }=Q_{\mathrm {X} }/A} ,

    где Q X {\displaystyle Q_{\mathrm {X} }} - тепло, отбираемое от холодного конца (в холодильных машинах холодопроизводительность); A {\displaystyle A}

    Для тепловых насосов используют термин коэффициент трансформации

    ε Γ = Q Γ / A {\displaystyle \varepsilon _{\Gamma }=Q_{\Gamma }/A} ,

    где Q Γ {\displaystyle Q_{\Gamma }} - тепло конденсации, передаваемое теплоносителю; A {\displaystyle A} - затрачиваемая на этот процесс работа (или электроэнергия).

    В идеальной машине Q Γ = Q X + A {\displaystyle Q_{\Gamma }=Q_{\mathrm {X} }+A} , отсюда для идеальной машины ε Γ = ε X + 1 {\displaystyle \varepsilon _{\Gamma }=\varepsilon _{\mathrm {X} }+1}

    Наилучшими показателями производительности для холодильных машин обладает обратный цикл Карно : в нём холодильный коэффициент

    ε = T X T Γ − T X {\displaystyle \varepsilon ={T_{\mathrm {X} } \over {T_{\Gamma }-T_{\mathrm {X} }}}} , поскольку, кроме принимаемой в расчёт энергии A (напр., электрической), в тепло Q идёт и энергия, отбираемая от холодного источника.

    Коэффициент полезного действия (КПД) – широко используемая характеристика эффективности некоторой системы или устройства. В нашем случае этой системой выступает двигатель внутреннего сгорания. Казалось бы, о какой эффективности может идти речь в мире современных моторов, разве она не равна 100 процентам? Но оказывается, как нет в нашем мире идеально черного или белого, так нет и машины, у которой вся энергия, получаемая от горения топлива, полностью переходит в механическую энергию, а последняя в свою очередь в полезную энергию прижимающую пилота автомобиля в его кресло.

    Что такое КПД двигателя внутреннего сгорания.

    Отношение полезной энергии к полной (затраченной), выраженное в процентном отношении, и есть искомый КПД двигателя внутреннего сгорания. Разберемся, куда же теряется энергия.

    На что тратиться полезная энергия?

    Первый пункт здесь – это потери, возникающие непосредственно при горении топлива, ведь все топливо в двигателе никогда не сгорает, часть его улетает в выхлопную трубу. Эта часть, в среднем, составляет около 25%.

    Следующим местом (точнее явлением), куда исчезает энергия, является тепло, выделяемое при горении. Возможно, кто-то из вас еще помнит со времен, проведенных на школьной скамье, что для получения тепла требуется энергия, соответственно, образуемое тепло – это есть потери энергии. Здесь стоит заметить, что тепла при работе двигателя внутреннего сгорания образуется с излишком, что требует внедрения серьезной системы охлаждения.

    Подведя итог, получаем еще порядка 35-40% потерь энергии на образование тепла.

    Ну, и третья группа потерь – это потери на обслуживание дополнительного оборудования. Помпа системы охлаждения, генератор, кондиционер и пр. – все они для своей работы тоже потребляют энергию. Энергия эта берется от работы двигателя – в размере порядка 10%.

    Подведя итог, получаем, что, сжигая топливо, в реальности на «полезное» дело автомобиль затрачивает лишь четверть, а порой и вовсе пятую часть той энергии, которую вырабатывает его движок. Цифры средние, но разбежка в целом понятна.

    КПД бензинового и дизельного двигателя.

    При этом стоит оговориться, что у бензиновых и дизельных машин КПД двигателя внутреннего сгорания различен: 20% против 40% (соответственно). Данный факт имеет место быть потому, что несмотря на то, что потери на обслуживание механики и нагрев планеты в бензиновых моторах и «дизелях» сопоставимы, количество сжигаемого в процессе горения топлива у дизельных двигателей выше.

    Подводя итоги и вспомнив историю появления двигателя внутреннего сгорания, когда КПД составлял немногим более 5%, можно сказать, что инженеры шагнули далеко вперед, а учитывая факт того, что 100% КПД, а по сути идеального двигателя, им вряд ли удастся добиться, можно утверждать, что современные двигатели, скорее всего, достигли своего верха возможного КПД, поэтому неудивительно, что сегодня все чаще автомобилистам предлагаются машины с гибридными двигателями и электромобили, ведь КПД движка у них (электромобилей) – для справки – порядка 90%.

    Видео.

    Коэффициент полезного действия (КПД) является величиной, которая в процентном отношении выражает эффективность того или иного механизма (двигателя, системы) касательно преобразования полученной энергии в полезную работу.

    Читайте в этой статье

    Почему КПД дизеля выше

    Показатель КПД для различных двигателей может сильно отличаться и зависит от ряда факторов. имеют относительно низкий КПД благодаря большому количеству механических и тепловых потерь, которые возникают в процессе работы силового агрегата данного типа.

    Вторым фактором выступает трение, возникающее при взаимодействии сопряженных деталей. Большую часть расхода полезной энергии составляет приведение в движение поршней двигателя, а также вращение деталей внутри мотора, которые конструктивно закреплены на подшипниках. Около 60% энергии сгорания бензина расходуется только на обеспечение работы этих узлов.

    Дополнительные потери вызывает работа других механизмов, систем и навесного оборудования. Также учитывается процент потерь на сопротивление в момент впуска очередного заряда топлива и воздуха, а далее выпуска отработавших газов из цилиндра ДВС.

    Если сравнить дизельную установку и мотор на бензине, дизельный двигатель имеет заметно больший КПД сравнительно с бензиновым агрегатом. Силовые агрегаты на бензине имеют КПД на отметке около 25-30% от общего количества полученной энергии.

    Другими словами, из потраченных на работу двигателя 10 литров бензина только 3 литра израсходованы на выполнение полезной работы. Остальная энергия от сгорания топлива разошлась на потери.

    При одинаковом показателе рабочего объёма, мощность атмосферного бензинового мотора выше, но достигается при более высоких оборотах. Двигатель нужно «крутить», потери возрастают, увеличивается расход топлива. Также необходимо упомянуть крутящий момент, под которым в буквальном смысле понимается сила, которая передается от мотора на колеса и движет автомобиль. Бензиновые ДВС выходят на максимум крутящего момента при более высоких оборотах.

    Аналогичный атмосферный дизель выходит на пик крутящего момента при низких оборотах, при этом расходует меньше солярки для выполнения полезной работы, что означает более высокий КПД и экономию топлива.

    Солярка образует больше тепла по сравнению с бензином, температура сгорания дизтоплива выше, показатель детонационной стойкости более высокий. Получается, у дизельного ДВС произведённая полезная работа на определенном количестве топлива больше.

    Энергетическая ценность солярки и бензина

    Дизельное топливо состоит из более тяжелых углеводородов, чем бензин. Меньший КПД бензиновой установки сравнительно с дизелем также заключаются в энергетической составляющей бензина и особенности его сгорания. Полное сгорание равного количества солярки и бензина даст больше тепла именно в первом случае. Тепло в дизельном ДВС более полноценно преобразуется в полезную механическую энергию. Получается, при сжигании одинакового количества топлива за единицу времени именно дизель выполнит больше работы.

    Также стоит учитывать особенности впрыска и создание надлежащих условий для полноценного сгорания смеси. В дизель топливо подается отдельно от воздуха, впрыскивается не во впускной коллектор, а напрямую в цилиндр в самом конце такта сжатия. Результатом становится более высокая температура и максимально полноценное сгорание порции рабочей топливно-воздушной смеси.

    Итоги

    Конструкторы постоянно стремятся повысить КПД как дизельного, так и бензинового двигателя. Увеличение количества впускных и выпускных клапанов на один цилиндр, активное применение , электронное управление топливным впрыском, дроссельной заслонкой и другие решения позволяют существенно повысить коэффициент полезного действия. В большей мере это касается дизельного двигателя.

    Благодаря таким особенностям современный дизель способен полностью сжечь насыщенную углеводородами порцию дизтоплива в цилиндре и выдать большой показатель крутящего момента на низких оборотах. Низкие обороты означают меньшие потери на трение и возникающее в результате трения сопротивление. По этой причине дизельный мотор сегодня является одним из наиболее производительных и экономичных типов ДВС, КПД которого зачастую превышает отметку в 50%.

    Читайте также

    Почему лучше прогреть двигатель перед поездкой: смазка, топливо, износ холодных деталей. Как правильно греть дизельный мотор зимой.

  • Список самых надежных бензиновых и дизельных моторов: 4-х цилиндровые силовые агрегаты, рядные 6-ти цилиндровые ДВС и V-образные силовые установки. Рейтинг.


  • Работу многих видов машин характеризует такой важный показатель, как КПД теплового двигателя. Инженеры с каждым годом стремятся создавать более совершенную технику, которая при меньших давала бы максимальный результат от его использования.

    Устройство теплового двигателя

    Прежде чем разбираться в том, что такое необходимо понять, как же работает этот механизм. Без знания принципов его действия нельзя выяснить сущность этого показателя. Тепловым двигателем называют устройство, которое совершает работу благодаря использованию внутренней энергии. Любая тепловая машина, превращающая в механическую, использует тепловое расширение веществ при повышении температуры. В твердотельных двигателях возможно не только изменение объема вещества, но и формы тела. Действие такого двигателя подчинено законам термодинамики.

    Принцип функционирования

    Для того чтобы понять, как же работает тепловой двигатель, необходимо рассмотреть основы его конструкции. Для функционирования прибора необходимы два тела: горячее (нагреватель) и холодное (холодильник, охладитель). Принцип действия тепловых двигателей (КПД тепловых двигателей) зависит от их вида. Зачастую холодильником выступает конденсатор пара, а нагревателем — любой вид топлива, сгорающий в топке. КПД идеального теплового двигателя находится по такой формуле:

    КПД = (Тнагрев. - Тхолод.)/ Тнагрев. х 100%.

    При этом КПД реального двигателя никогда не сможет превысить значения, полученного согласно этой формуле. Также этот показатель никогда не превысит вышеупомянутого значения. Чтобы повысить КПД, чаще всего увеличивают температуру нагревателя и уменьшают температуру холодильника. Оба эти процесса будут ограничены реальными условиями работы оборудования.

    При функционировании теплового двигателя совершается работа, по мере которой газ начинает терять энергию и охлаждается до некой температуры. Последняя, как правило, на несколько градусов выше окружающей атмосферы. Это температура холодильника. Такое специальное устройство предназначено для охлаждения с последующей конденсацией отработанного пара. Там, где имеются конденсаторы, температура холодильника иногда ниже температуры окружающей среды.

    В тепловом двигателе тело при нагревании и расширении не способно отдать всю свою внутреннюю энергию для совершения работы. Какая-то часть теплоты будет передана холодильнику вместе с или паром. Эта часть тепловой неизбежно теряется. Рабочее тело при сгорании топлива получает от нагревателя определенное количество теплоты Q 1 . При этом оно еще совершает работу A, в ходе которой передает холодильнику часть тепловой энергии: Q 2

    КПД характеризует эффективность двигателя в сфере преобразования и передачи энергии. Этот показатель часто измеряется в процентах. Формула КПД:

    η*A/Qx100 %, где Q — затраченная энергия, А — полезная работа.

    Исходя из закона сохранения энергии, можно сделать вывод, что КПД будет всегда меньше единицы. Другими словами, полезной работы никогда не будет больше, чем на нее затрачено энергии.

    КПД двигателя — это отношение полезной работы к энергии, сообщенной нагревателем. Его можно представить в виде такой формулы:

    η = (Q 1 -Q 2)/ Q 1 , где Q 1 — теплота, полученная от нагревателя, а Q 2 — отданная холодильнику.

    Работа теплового двигателя

    Работа, совершаемая тепловым двигателем, рассчитывается по такой формуле:

    A = |Q H | - |Q X |, где А — работа, Q H — количество теплоты, получаемое от нагревателя, Q X — количество теплоты, отдаваемое охладителю.

    |Q H | - |Q X |)/|Q H | = 1 - |Q X |/|Q H |

    Он равняется отношению работы, которую совершает двигатель, к количеству полученной теплоты. Часть тепловой энергии при этой передаче теряется.

    Двигатель Карно

    Максимальное КПД теплового двигателя отмечается у прибора Карно. Это обусловлено тем, что в указанной системе он зависит только лишь от абсолютной температуры нагревателя (Тн) и охладителя (Тх). КПД теплового двигателя, работающего по определяется по следующей формуле:

    (Тн - Тх)/ Тн = - Тх - Тн.

    Законы термодинамики позволили высчитать максимальный КПД, который возможен. Впервые этот показатель вычислил французский ученый и инженер Сади Карно. Он придумал тепловую машину, которая функционировала на идеальном газу. Она работает по циклу из 2 изотерм и 2 адиабат. Принцип ее работы довольно прост: к сосуду с газом подводят контакт нагревателя, вследствие чего рабочее тело расширяется изотермически. При этом оно функционирует и получает определенное количество теплоты. После сосуд теплоизолируют. Несмотря на это, газ продолжает расширяться, но уже адиабатно (без теплообмена с окружающей средой). В это время его температура снижается до показателей холодильника. В этот момент газ контактирует с холодильником, вследствие чего отдает ему определенное количество теплоты при изометрическом сжатии. Потом сосуд снова теплоизолируют. При этом газ адиабатно сжимается до первоначального объема и состояния.

    Разновидности

    В наше время существует много типов тепловых двигателей, которые работают по разным принципам и на различном топливе. У всех у них свой КПД. К ним относятся следующие:

    Двигатель внутреннего сгорания (поршневой), представляющий собой механизм, где часть химической энергии сгорающего топлива переходит в механическую энергию. Такие приборы могут быть газовыми и жидкостными. Различают 2- и 4-тактные двигатели. У них может быть рабочий цикл непрерывного действия. По методу приготовления смеси топлива такие двигатели бывают карбюраторными (с внешним смесеобразованием) и дизельными (с внутренним). По видам преобразователя энергии их разделяют на поршневые, реактивные, турбинные, комбинированные. КПД таких машин не превышает показателя в 0,5.

    Двигатель Стирлинга — прибор, в котором рабочее тело находится в замкнутом пространстве. Он является разновидностью двигателя внешнего сгорания. Принцип его действия основан на периодическом охлаждении/нагреве тела с получением энергии вследствие изменения его объема. Это один из самых эффективных двигателей.

    Турбинный (роторный) двигатель с внешним сгоранием топлива. Такие установки чаще всего встречаются на тепловых электрических станциях.

    Турбинный (роторный) ДВС используется на тепловых электрических станциях в пиковом режиме. Не так сильно распространен, как другие.

    Турбиновинтовой двигатель за счет винта создает некоторую часть тяги. Остальное он получает за счет выхлопных газов. Его конструкция представляет собой роторный двигатель на вал которого насаживают воздушный винт.

    Другие виды тепловых двигателей

    Ракетные, турбореактивные и которые получают тягу за счет отдачи выхлопных газов.

    Твердотельные двигатели используют в качестве топлива твердое тело. При работе изменяется не его объем, а форма. При эксплуатации оборудования используется предельно малый перепад температуры.

    Как можно повысить КПД

    Возможно ли повышение КПД теплового двигателя? Ответ нужно искать в термодинамике. Она изучает взаимные превращения разных видов энергии. Установлено, что нельзя всю имеющуюся тепловую энергию преобразовать в электрическую, механическую и т. п. При этом преобразование их в тепловую происходит без каких-либо ограничений. Это возможно из-за того, что природа тепловой энергии основана на неупорядоченном (хаотичном) движении частиц.

    Чем сильнее разогревается тело, тем быстрее будут двигаться составляющие его молекулы. Движение частиц станет еще более беспорядочным. Наряду с этим все знают, что порядок можно легко превратить в хаос, который очень трудно упорядочить.

Понравилось? Лайкни нас на Facebook