Чем актуально использовать водородное топливо. Водородное топливо. Водород на Земле

Мы живем в 21 веке, пришло время для создания топлива будущего, которое заменит традиционное топливо и ликвидирует нашу зависимость от него. Ископаемые виды топлива сегодня являются нашим основным источником энергии.

За последние 150 лет количество углекислого газа в атмосфере увеличилось на 25%. Сжигание углеводородов приводит к загрязнениям, таким как смог, кислотные дожди и загрязнение воздуха.

Каким будет топливо будущего?

Водород — альтернативный вид топлива будущего

Водород бесцветный газ без запаха, составляет 75% массы всей Вселенной. Водород на Земле существует только в сочетании с другими элементами, такими как кислород, углерод и азот.

Чтобы использовать чистый водород, он должен быть отделен от этих других элементов, чтобы быть использованным в качестве топлива.

Переход на водород всех автомобилей и всех автозаправочных станций непростая задача, но в долгосрочной перспективе, переход на водород, как альтернативный вид топлива для автомобилей, будет очень выгодно.

Превращение воды в топливо

Водные топливные технологии используют воду, соль и очень недорогой металлический сплав. Газ, что результатом этого процесса является — чистый водород, который горит как топливо без необходимости использования внешнего кислорода — и не выделяет никаких загрязнений.

Морская вода может использоваться непосредственно в качестве основного топлива, тем самым устраняя необходимость добавления соли.

Есть еще один способ превращения воды в топливо. Он называется электролизом. Этот метод превращения воды в газ Брауна, который также является прекрасным топливом для нынешних бензиновых двигателей.

Почему газ Брауна лучшее топливо, чем чистый водород?

Давайте посмотрим на все три вида водородного топливного решения — топливные элементы, чистый водород, и газ Брауна — и посмотрим, как они работают по отношению к кислороду и его потреблению:

Топливные элементы: Этот метод использует кислород из атмосферы при полном сжигании водорода в топливных элементах. Что выходит из выхлопной трубы? Кислород и пары воды! Но кислород изначально пришел из атмосферы, а не из топлива.

И поэтому использование топливных элементов не решает проблему: окружающая среда испытывает огромные проблемы на данный момент с содержанием кислорода в воздухе; мы теряем кислород.

Водород: Это топливо является совершенным, если бы не одно «но». Хранение и распределение водорода требует специального оборудования, а топливные баки автомобилей должны выдерживать высокое давление сжиженного газа водорода.

Газ Брауна: Это самое совершенное топливо для работы всех наших транспортных средств. Чистый водород поступает непосредственно из воды, то есть, пара водород — кислород, но, кроме того, он горит в двигателе внутреннего сгорания, выделяя кислород в атмосферу: из выхлопной трубы входит в атмосферу кислород и пары воды.

Так, при сжигании газа Брауна в качестве топлива, можно увеличить кислород воздуха и тем самым увеличить содержание кислорода в нашей атмосфере. Это способствует решению очень опасной экологической проблемы.

Газ Брауна — идеальное топливо будущего

Об использовании воды в качестве альтернативного вида топлива для автомобилей, о планах преобразования бензиновых двигателей для работы на обычной водопроводной воде, этот постулат является мировым переворотом в сознании людей.

Теперь только вопрос времени, когда все поймут, что вода лучшее топливо для нашего транспорта. Лицо или лица, которые дали нам это знание, мы должны их помнить как героев.

Их убивали, их патенты скупались частными лицами, чтобы их изобретения не стали достоянием гласности; информация об автомобилях на воде жила в Интернете не более 1-2 часов…
Но сейчас что-то изменилось, видимо, власть имущие решили «Пусть начнутся игры»!

Автомобилей на воде работает, и мы знаем это наверняка. Работа бензиновых двигателей на воде — это как трамплин для гораздо лучших технологий, чем те, которые уже существуют и которые быстро заменят идею ведения автомобилей на воде.

Но пока нефтяные компании душат идею автомобиля на воде, овладеть более высокими технологиями не получится, и использование нефти будет продолжаться. Это общее мнение ученых, так говорят во всем мире.

Может ли использование воды в виде топлива изменить жизнь Земли?

Известно ли Вам, что водоснабжение Земли не является статическим? Количество воды на Земле увеличивается с каждым днем.

Было обнаружено, что в последние несколько лет, большое количество воды ежедневно прибывает из космоса в виде водных астероидов!

Эти огромные астероиды — мегатонны воды, которые попав в верхние слои атмосферы, немедленно испаряются, и в конце концов оседают на Землю.

Вы можете просмотреть фотографии НАСА этих астероидов в первой книге доктора Эмото, «Сообщение о воде«. Почему эти водные астероиды ближаются к Земле, а не на другие планеты, такие как Марс, остается загадкой.

И действительно ли то, что это происходит только сейчас или это происходило на протяжении всей истории Земли. Другое дело, что никто не знает ответа.

Таяние ледников . Помимо этого, уровень океана повышается из-за таяния ледников. Как следствие потепления климата, начинает быть слишком много воды на Земле.

Я разговаривал с учеными, которые считают, что было бы реально помочь, если бы небольшое количество воды было как-то использовано в это время — например, для работы машин.

Запуск автомобилей на воде поможет пополнить кислород в нашей атмосфере: главная причина для перехода на воду в качестве топлива — наши текущие экологические проблемы.

Они настолько велики, что если мы не будем делать что-то для снижения использования ископаемых видов топлива, наша Земля будет уничтожена. И уже не будет имеет значения, если ли у планеты вода или ее нет.

Иногда человек потребляет то, что является потенциально опасным для того, чтобы стать здоровым. Запуск автомобилей на воде сродни этой концепции. Это может быть потенциально опасным, если бы мы продолжали использовать воду в качестве топлива для чрезмерного периода времени.

Но учитывая все обстоятельства, это решение является лучшим из того, что правительства могут себе позволить на время.

Даже правительства готовятся запустить автомобили на топливных элементах, где топливом является водород. И для реализации этой технологии, нам не придется изменять наши двигатели — альтернативный источник нашего топлива может быть не единственным.

Биологическое топливо, производимое из растительного сырья и используемое в некоторых странах, не может полностью заменить углеводородное топливо. Его доля в современном количестве топлива для двигателей внутреннего сгорания (далее по тексту ДВС) составляет менее 1% .

Перевод на использование электроэнергии сопряжён с определёнными трудностями и ограничениями. В частности, пробег электромобилей без подзарядки не может удовлетворить даже нетребовательных автолюбителей. К тому же современная наука не в состоянии обеспечить электромобили малогабаритными и мощными аккумуляторными батареями.

Использование гибридных двигателей позволяет довольно-таки существенно уменьшить объёмы потребляемого бензина, но не избавляет полностью от его использования. Да и стоимость автомобилей с такими силовыми агрегатами не всем по карману.

Введение в водородную энергетику и топливные элементы

Новый вид топлива должен отвечать многим требованиям:

  1. Иметь достаточные по объёму сырьевые ресурсы.
  2. Его себестоимость не должна быть высокой.
  3. Современные ДВС должны без доработок, или с их минимальным количеством, работать на новом топливе.
  4. Выброс вредных веществ работающим двигателем должен быть минимальным.
  5. нового топлива должна быть выше существующего.

История использования водорода в качестве топлива

Водорода как топлива для ДВС не нова. Ещё в 1806 году изобретатель Франсуа Исаак де Рива запатентовал во Франции первый двигатель на водороде. Но его изобретение не получило признания и не имело успеха. С середины XIX века в качестве топлива стал широко использоваться бензин. В блокадном Ленинграде, в условиях тотального дефицита бензина, более 600 автомобилей успешно работали на водороде. После войны этот опыт был успешно забыт.

Вернуться к водородному топливу и всерьёз заняться научными изысканиями в этой области заставил второй половины прошлого столетия. Причём такими разработками занимались учёные практически всех развитых стран.

Нужно отметить определённые успехи, достигнутые в этой области. Такие известные производители, как Honda, Toyota, Hyundaiи другие выпускают свои модели водородных автомобилей.

Варианты использования водорода как топлива

Использовать водород как топливо для автомобилей можно разными способами:

  1. Используя только сам водород.
  2. Используя его в смеси с другими видами топлива.
  3. Применение водорода в топливных элементах.

Самый доступным методом производства водорода является сегодня электролитический метод, при котором водород получают из воды, путём воздействия сильного электрического тока, возникающего между разнополярными электродами. Сегодня более 90% добываемого водорода производится из углеводородных газов.

Использование чистого водорода для питания ДВС давно опробовано. И не получает широкого применения, в частности, по целому ряду объективных причин. А именно:

  1. Большой энергозатратности сегодняшних способов получения этого вида топлива.
  2. Необходимости создания и использования сверхгерметичных ёмкостей для хранения полученного водорода.
  3. Отсутствия сети станций для заправки автомобилей водородом.

Из дополнительного оборудования для сжигания водорода в ДВС автомобиля, устанавливается лишь система питания водородом и бак для его хранения. Такой метод допускает использование в качестве топлива, как водорода, так и бензина. Его используют в своих водородных автомобилях такие автогиганты как BMW и Mazda.

Возможно использование водорода в смеси с традиционным углеводородным топливом. Использование такого метода обусловлено теми же проблемами, что и метод работы ДВС на чистом водороде, и даёт значительную экономию бензина или дизельного топлива.

Но самым предпочтительным многие специалисты и автопроизводители признают автомобили, работающие с использованием топливных элементов. Не вдаваясь в технические подробности этот процесс можно описать как соединение водорода и кислорода в устройстве, называемом топливным элементом, в результате которого образуется электрический ток, подающийся на электродвигатели, приводящие автомобиль в движение. Побочным продуктом этого процесса является вода, которая в виде пара выводится наружу. Такой метод активно используют такие производители автомобилей как Nissan , Toyota и Ford .

Преимущества использования водородного топлива. Самое главное достоинство водородных двигателей – . Использование водорода избавит от огромного количества всевозможных вредных веществ, попадающих в окружающее пространство в виде выхлопов при использовании углеводородных видов топлива.

Привлекательным в сегодняшних реалиях является тот факт, что не утрачивается возможность использования того же бензина.

Отсутствие сложных и дорогостоящих систем подачи топлива также, несомненно, можно отнести к существенным преимуществам ДВС на водороде перед традиционными.

Ну и, конечно же, нельзя не сказать о существенно большем КПД водородного двигателя, по сравнению с классическими вариантами ДВС.

Недостатки автомобилей на водородном топливе. К ним можно отнести увеличение веса автомобиля за счёт установки водородного бака и другого дополнительного оборудования.

Довольно-таки низкая безопасность при сжигании чистого водорода в ДВС. Весьма велика вероятность его воспламенения и даже взрыва.

Дороговизна топливных водородных элементов, на использование которых делают упор многие автопроизводители.

Несовершенство нынешних ёмкостей для хранения водорода в автомобиле. До сих пор у учёных нет однозначного мнения по поводу материалов, из которых необходимо делать автомобильные баки для водорода.

Отсутствие сети станций для заправки автомобилей водородом делает эксплуатацию водородного автомобиля весьма затруднительной.

Выводы

Несмотря на существенные технические проблемы и недоработки, использование в будущем водорода как основного вида топлива имеет . Альтернативы ему, по крайней мере, сегодня, нет.

Популярность электромобилей в последнее время несколько задвинула на второй план авто на топливных элементах. Тем не менее водород готовится дать бой электричеству, и сегодня мы посмотрим на перспективы этого элемента в энергетическом будущем планеты. Водород — это самый простой и распространенный химический элемент во вселенной, на долю которого приходится 74% всей известной нам материи. Именно водород используется звездами, в том числе и Солнцем, для высвобождения огромного количества энергии в результате термоядерных реакций.

Несмотря на свою простоту и распространенность, на Земле водород в свободной форме не встречается. За счет своего легкого веса он либо поднимается в верхние слоя атмосферы, либо вступает в связь с другими химическими элементами, например с кислородом, образуя воду.

Интерес к водороду, как к альтернативному источнику энергии, в последние десятилетия вызван двумя факторами. Во-первых, загрязнением окружающей среды ископаемым топливом, являющимся основным источником энергии на данном этапе развития цивилизации. И, во-вторых, тем фактом что запасы ископаемого топлива ограничены и по оценкам экспертов будут истощены приблизительно через шестьдесят лет.

Водород, как впрочем и некоторые другие альтернативы, является решением вышеперечисленных проблем. Использование водорода приводит к нулевым загрязнениям, поскольку в результате выделения энергии побочными продуктами являются лишь тепло и вода, которые могут быть использованы повторно для других целей. Запасы водорода также очень сложно истощить, учитывая что он составляет 74% вещества во Вселенной, а на Земле входит в состав воды, которой покрыто две трети поверхности планеты.

Получение водорода

В отличие от ископаемых источников энергии (нефти, угля, природных газов), водород не является готовым к использованию источником энергии, а считается ее носителем. То есть взять водород в чистом виде как уголь и использовать для получения энергии невозможно, необходимо сначала потратить некоторую энергию для того чтобы получить чистый водород пригодный для использования в топливных элементах.

Поэтому водород нельзя сравнивать с ископаемыми источниками энергии и более коректна аналогия с батареями, которые предварительно необходимо зарядить. Правда батареи перестают работать после разряда, а водородные элементы могут производить энергию до тех пор пока будут снабжаться топливом (водородом).

Наиболее распространенным и недорогим методом получения водорода считается паровой риформинг, в котором используются углеводороды (вещества состоящие исключительно из углерода и водорода). Во время реакции воды и метана (CH4) при высоких температурах выделяется большое количество водорода. Недостатком метода является то, что побочным продуктом реакции является углекислый газ, поступающий в атмосферу точно так же как и при сжигании ископаемого топлива, что соответственно не снижает выбросы парниковых газов несмотря на использование альтернативного источника энергии..

Возможно и прямое применение некоторых природных газов непосредственно в водородных топливных элементах в качестве альтернативы. Это позволяет не затрачивать энергию на получение водорода из газа. Стоимость таких топливных элементов будет ниже, однако при работе на природном газе в атмосферу также будут попадать парниковые газы и другие токсические элементы, что не делает такие газы полноценной заменой водороду.

Получить водород можно и в процессе электролиза. При пропускании электрического тока через воду, происходит ее разделение на составляющие химические элементы в результате чего получают водород и кислород.

Помимо привычных способов сейчас тщательно исследуются альтернативные пути получения водорода. Например, при наличии солнечного освещения продуктом жизнедеятельности некоторых водорослей и бактерий также может быть водород. Некоторые из этих бактерий могут производить водород прямо из обычных бытовых отходов. Несмотря на относительно низкую эффективность этого метода, возможность перерабатывать отходы делает его достаточно перспективным, особенно с учетом того что эффективность процесса постоянно повышается в результате создания новых видов бактерий.

Совсем недавно на горизонте появился еще один перспективный способ получения водорода с применением аммиака (NH3). При разделении этого химического вещества на составляющие получается одна часть азота и три части водорода. Наилучшими катализаторами таких реакций являются дорогостоящие редкие металы. Новый способ вместо одного редкого катализатора использует два доступных и недорогих вещества, соду и амиды. При этом эффективность процесса сопоставима с наиболее результативными дорогими катализаторами.

Помимо низкой стоимости данный метод примечателен и тем что аммиак проще хранить и транспортировать по сравнению с водородом. А в необходимый момент водород можно получить из аммиака просто запустив химическую реакцию. По неподтвержденным пока прогнозам использование аммиака позволит создать реактор объемом не более 2-литровой бутылки, достаточный для производства водорода из аммиака в количествах достаточных для использования автомобилем обычных размеров.

Аммиак на данный момент транспортируется в огромных количествах и широко применяется в качестве удобрения. Именно это химическое вещество делает возможным выращивание практически половины еды на Земле, и возможно в будущем станет одним из важнейших источников энергии для человечества.

Сферы применения

Водородные топливные элементы могут применяться практически в любом виде транспорта, в стационарных источниках энергии для домов, а также в небольших портативных, иногда карманных устройствах, для генерирования электричества, используемого другими мобильными устройствами.

Еще в 70-х годах прошлого столетия водород начали применять в NASA для вывода ракет и космических шатлов на орбиту Земли. Водород используется и позже для получения электричества на шатлах, а также воды и тепла в качестве побочных продуктов реакции.

На текущий момент наибольшие усилия направлены на продвижение водорода как топлива в автомобильной индустрии.

Сравнение водородных и электрических автомобилей

Водород на обывательском уровне по-прежнему принято считать опасным химическим элементом. Эта репутация закрепилась за ним после крушения дирижабля Гинденбург в 1937. Тем не менее Администрация по энергетической информации США (EIA) утверждает что в аспектах использования водорода касающихся нежелательных взрывов, этот элемент как минимум так же безопасен как и бензин.

На текущий момент очевидно, что если не произойдет очередной технологической революции, то машины ближайшего будущего будут преимущественно либо электрическими, либо водородными, либо гибридными формами этих двух технологий и бензиновых авто.

У каждого из вариантов развития автоиндустрии есть свои преимущества и недостатки. Заправочные станции под водородное топливо гораздо проще сделать на базе текущих бензиновых заправок, чего не можно сказать об инфраструктуре для электического «заряда» транспортных средств.

В определенном смысле разделение на водородные и электрические автомобили является искусственным, поскольку в обоих случаях машина использует электричество для движения. Только в электрокарах оно запасено в более привычной для нас форме непосредственно в аккумуляторах, а в топливных элементах вещество, которое в результате реакции будет переводить химическую энергию в электрическую, можно добавить в любой момент.

Заправка водородом по времени сравнима с заправкой бензином, и занимает несколько минут, а вот полный заряд электрических аккумуляторов на текущий момент в лучшем случае производится за 20-40 минут. С другой стороны электромобили обладают тем преимуществом что их можно подключать к розетке непосредственно дома, и если делать это ночью то можно экономить на электро-тарифах.

Экологичность

Поскольку ни электричество, ни водород не являются природными источниками энергии, в отличие от ископаемого топлива, то на их получение необходимо затратить энергию. Источник этой энергии и становится решающим фактором в экологичности как водородных, так и электрических автомобилях.

Для получения водорода требуется либо тепло, либо электрический ток, которые в жарких и солнечных регионах планеты могут быть получены сбором солнечной энергии. В холодных странах, например Скандинавии, уже сейчас упор делается на более подходящем для этого климата источнике зеленой энергии, на ветряных станциях, которые с таким же успехом могут принимать участие в производстве водорода с помощью электролиза. Примечательно что водород в таком случае может использоваться и для хранения неиспользуемой энергии, например при выработке ночью.

Учитывая обязательную стадию получения водорода и электричества, нулевой уровень выбросов таких автомобилей зависит от того каким способом была получена первичная энергия. Именно поэтому между обоими типами транспортных средств соблюдается паритет и ни один нельзя причислить к более экологическому средству передвижения.

Ничью можно констатировать и сравнив шумность этих видов транспорта. В отличие от традиционных, новые двигатели работают гораздо тише.

По этому поводу можно вспомнить известный закон красного флага регулирующий появление первых автомобилей в 19 веке. Согласно самым жестким формам этого закона транспортное средство без лошадей не могло перемещаться в черте города со скоростью превышающей 3.2 км/ч. При этом предвосхищяя движение автомобиля за несколько минут до его появления по дороге должен был идти человек с красным флагом, предупреждающий о появлении транспорта.

Закон красного флага был принят в связи с тем что новые транспортные средства перемещались относительно бесшумно по сравнению с каретами и могли стать причиной аварий и травм, по крайней мере по мнению судей того времени. Проблема, хоть и была преувеличена, но все же спустя полтора века мы можем стать свидетелями новых подобных законов в связи с бесшумностью новых типов двигателей. Электрокары и авто на топливных элементах вряд ли работают громче первых транспортных средств, а вот скорость их перемещения в городской черте сейчас явно выше 3 км, что делает их потенциально опасными для пешеходов. В той же Формула 1 сейчас задумываются об усилении звука моторов с помощью искусственной озвучки. Но если в автогонках это делается для повышения зрелищности, то в новых автомобилях появление искусственного источника шума может стать требованием безопасности.

Отрицательные температуры

Автомобили на топливных элементах, как и обычные бензиновые авто, испытывают определенные проблемы на морозе. Внутри самых батарей может содержаться небольшое количество воды, замерзающее при отрицательных температурах и приводящее батареи в неработоспособное состояние. После прогрева батареи будут работать нормально, однако вначале без внешнего обогрева, они либо не заводятся, либо работают некоторое время на пониженной мощности.

Дальность перемещения

Дистанция перемещения современных водородных авто составляет приблизительно 500 км, что заметно больше чем в типичных электрокарах, которые нередко могут перемещаться лишь на 150-200 км. Ситуация изменилась после появления Tesla Model S, однако даже этот электрокар способен перемещаться без дозарядки на расстояние не более 430 км.

Такие цифры достаточно неожиданны если учесть КПД соответствующих типов двигателей. Для обычных бензиновых двигателей внутреннего сгорания КПД составляет приблизительно 15%. КПД авто на топливных элементах — 50%. КПД электромобилей — 80%. На данный момент концерн General Electrics работает над топливными элементами с 65% эффективностью и утверждает что их КПД может быть повышен до 95%, что позволят запасать до 10 МВт электрической энергии (после преобразования) в одном элементе.

Вес батарей и топлива

Однако слабым местом электрокаров являются сами батареи. Например в Tesla Model S она весит 550 кг, а полный вес авто составляет 2100 кг, что на пару сотен килограм больше веса аналогичного водородного транспортного средства. Вес этой батареи к тому же не уменьшается по мере преодоления дистанции, в то время как выработанное топливо в бензиновых и водородных автомобилях постепенно делает машину легче.

Выигрывают водородные элементы и в плане хранения энергии в пересчете на единицу массы. В плане плотности энергии на единицу объема водород не так хорош. При обычных условиях этот газ содержит лишь треть энергии метана в одинаковом объеме. Естественно водород хранится при транспортировке и внутри топливных батарей в жидком или сжатом виде. Но даже в этом случае количество энергии (Мегаджоулей) в одном литре проигрывает показателям бензина.

Сильные стороны водорода проявляются при пересчете энергии на единицу веса. В этом случае он уже в три раза превосходит бензин (143 МДж/кг против 47 МДж/кг). Выигрывает водород по этому показателю и у электрических батарей. При одинаковом весе водород имеет вдвое больший запас энергии чем электрическая батарея.

Хранение и транспортировка

Определенные сложности возникают и при хранении водорода. Наиболее эффективная форма для транспортировки и хранения этого химического элемента — жидкое состояние. Однако добиться перехода газа в жидкую форму можно лишь при температуре в -253 градуса Цельсия, что требует специальных контейнеров, оборудования и немалых финансовых затрат.

2015 год

Toyota, Hyundai, Honda и другие производители авто в течение многих лет вкладывали большие средства в исследование водородных топливных элементов и в 2015 году собираются представить первые автомобили стоимость и характеристики которых позволят рассматривать их как альтернативу другим видам транспорта. Машина на топливных элементах в 2015 году должна быть среднеразмерным 4-дверным седаном с возможностью преодоления как минимум 500 км без дозаправок, которые будут длиться не более пяти минут. Стоимость такого авто должна находиться в диапазоне от $50 тыс до $100 тыс. Таким образом стоимость водородных авто снизилась на порядок в течение одного десятилетия.

Как должно быть очевидно из списка автопроизводителей, Япония станет одним из центров развития водородных автомобилей. Интересно что одним из главных рынков для этих авто станет территория отделенная от Японии гораздо большими расстояними чем близлежащий азиатский рынок.

Калифорния уже давно имеет репутацию одного из самых прогрессивных мест на планете Земля. Именно здесь законодательство часто дает зеленый свет новейшим технологиям и изобретениям. Не стало исключением и продвижение автомобилей на альтернативном топливе.

Согласно принятому закону о транспортных средствах с нулевым выбросом (ZEV — zero-emission vehicle) к 2025 15% от всех проданных автомобилей не должны производить вредных выбросов в атмосферу. Совместно с десятью другими штатами, принявшими аналогичные законы, к 2025 году на дорогах США должно находиться около 3.3 млн ZEV.

Несмотря на то что подготовка к запуску новых автомобилей идет полным ходом, на первых этапах производителям придется столкнуться с серьезными инфраструктурными проблемами. Toyota выделила $200 млн на постройку водородных заправочных станций на территории Калифорнии, однако этих средств будет достаточно для создания лишь двадцати заправочных точек в следующем году. Даже без учета большой стоимости постройки, количество заправок будет увеличиваться достаточно скромными темпами. В 2016 году их число составит 40 штук, а в 2024 — 100 штук.

Такие размеренные сроки постройки можно легко объяснить тем что провести даже небольшую технологическую революцию за один год практически невозможно. 2015 год обозначен в календаре как год начала развития водородной автоиндустрии, однако настоящую конкуренцию машины на топливных элементах смогут составить своим конкурентам скорее всего лишь с появлением второго поколения более недорогих и надежных моделей, которые ожидаются к 2020 году, и появятся на дорогах с уже более-менее развитой сетью дозаправочных станций.

Несмотря на обилие японских имен среди производителей водородных авто, интересуются этим видом транспорта на других континентах. Среди известных производителей водородные планы есть у: General Electrics, Diamler, General Motors, Mercedes-Benz, Nissan, Volkswagen.

Итоги

Как это часто бывает, мир не делится на белое и черное, и водород не станет единственным источником энергии в будущем. Этот элемент совместно с другими альтеранитвными источниками энергии станет частью решения проблемы загрязнения окружающей среды и исчезновения природных ископаемых ресурсов. Перспектива данного вида топлива и водородных автомобилей начнет проясняться в 2015 году с появлением первых массовых авто на дорогах. Насколько они смогут конкурировать с электромобилями мы скорее всего узнаем в 2020 году по мере дальнейшего развития технологий и появления второго поколения топливных авто.

На данный момент водород является самым разрабатываемым "топливом будущего". На это есть несколько причин: при окислении водорода образуется как побочный продукт вода, из нее же можно водород добывать. А если учесть, что 73% поверхности Земли покрыты водой, то можно считать, что водород неисчерпаемое топливо. Так же возможно использование водорода для осуществления термоядерного синтеза, который вот уже несколько миллиардов лет происходит на нашем Солнце и обеспечивает нас солнечной энергией.

Управляемый термоядерный синтез

Управляемый термоядерный синтез использует ядерную энергию, выделяющуюся при слиянии легких ядер, таких как ядра водорода или его изотопов дейтерия и трития. Ядерные реакции синтеза широко распространены в природе, будучи источником энергии звезд. Ближайшая к нам звезда - Солнце - это естественный термоядерный реактор, который уже многие миллиарды лет снабжает энергией жизнь на Земле. Ядерный синтез уже освоен человеком в земных условиях, но пока не для производства мирной энергии, а для производства оружия он используется в водородных бомбах. Начиная с 50 годов, в нашей стране и параллельно во многих других странах проводятся исследования по созданию управляемого термоядерного реактора. С самого начала стало ясно, что управляемый термоядерный синтез не имеет военного применения. В 1956 году исследования были рассекречены и с тех пор проводятся в рамках широкого международного сотрудничества. В то время казалось, что цель близка, и что первые крупные экспериментальные установки, построенные в конце 50 годов, получат термоядерную плазму. Однако потребовалось более 40 лет исследований для того, чтобы создать условия, при которых выделение термоядерной мощности сравнимо с мощностью нагрева реагирующей смеси. В 1997 году самая крупная термоядерная установка - Европейский Токамак, JET, получила 16 МВт термоядерной мощности и вплотную подошла к этому порогу.

Электроводородный генератор

В результате проведенных работ изобретено и патентуется по системе РСТ простое высокопроизводительное устройство для разложения воды и производства из нее беспрецедентно дешевого водорода методом гравитационного электролиза раствора электролита, получившее название "электроводородный генератор (ЭВГ)". Он приводится в действие механическим приводом и работает при обычной температуре в режиме теплового насоса, поглощая через свой теплообменник необходимое при этом тепло из окружающей среды или утилизируя теплопотери промышленных или транспортных энергоустановок. В процессе разложения воды подведенная к приводу ЭВГ избыточная механическая энергия может быть на 80 % преобразована в электроэнергию, которая затем используется любым потребителем на нужды полезной внешней нагрузки. При этом на каждую единицу затраченный мощности привода генератором в зависимости от заданного режима работы поглощается от 20 до 88 энергетических единиц низкопотенциального тепла, что собственно и компенсирует отрицательный термический эффект химической реакции разложения воды. Один кубический метр условного рабочего объема генератора, работающего в оптимальном режиме с КПД 86-98 %, способен за секунду произвести 3,5 м3 водорода и одновременно около 2,2 МДж постоянного электрического тока. Единичная тепловая мощность ЭВГ в зависимости от решаемой технической задачи может варьироваться от нескольких десятков ватт до 1000 МВт.

"Водородный" автомобиль

Французский автомобильный концерн Renault совместно с компанией Nuvera Fuel Cells планирует разработать серийный автомобиль, использующий в качестве топлива водород, уже к 2010 году (рис.6)

Рис. 6

Nuvera - небольшая американская компания, с 1991 года занимающаяся разработкой двигателей, альтернативных доминирующим сейчас бензиновым и дизельным. В основе разработок Nuvera лежит так называемый "топливный элемент" (Fuel Cell). Топливный элемент - устройство, не имеющее движущихся частей, в котором происходит химическая реакция водорода и кислорода, в результате которой вырабатывается электричество. Побочными продуктами реакции является выделяемое тепло и некоторое количество воды.

Принцип "топливного элемента" в корне отличается от обычного процесса электролиза, применяемого сейчас в батареях и аккумуляторах. Разработчики утверждают, что их продукция - это по сути дела "вечная батарейка", имеющая весьма значительный срок службы. Кроме того, в отличие от обычной батареи, "топливный элемент" не нуждается в подзарядке.

"Водородные батарейки"

Группа инженеров из технологического института штата Массачусетс (Massachusetts Institute of Technology) совместно со специалистами других университетов и компаний разрабатывает миниатюрный топливный двигатель, который в будущем сможет заменить батареи и аккумуляторы.

Журнал Popular Science, опубликовавший статью об исследованиях американских учёных, не удержался от восторга: "Вы только представьте себе жизнь без батареи! Когда топливо заканчивается в вашем ноутбуке, вы "заливаете полный бак" - и вперёд!"

Достоинства: Главным и неоспоримым преимуществом автомобилей на водородном топливе является высокая их экологичность. Так и запишем:
Экологичность водородного топлива. Продуктом горения водорода является вода, точнее водяной пар. Это, естественно, не означает, что при езде на таком автотранспорте не будет выделяться токсичных газов, ведь в ДВС помимо водорода сгорают ещё и различные масла. Однако количество выбросов их несравнимо с чадящими бензиновыми коллегами. Собственно, ухудшающееся состояние экологии – это проблема человечества, и если количество бензиновых «монстров» будет расти такими темпами, то водородное топливо, как когда-то, в войну, станет единственным спасением теперь уже не города, а всего человечества.
ДВС на водороде может использовать и классические виды топлива, такие как бензин. Для этого придётся устанавливать на автомобиль дополнительный топливный бак. Такой гибрид гораздо легче «продвинуть» на рынок, чем чистый водородный ДВС.
Бесшумность.
Простота конструкции и отсутствие дорогостоящих, ненадёжных и опасных систем топливоподачи, охлаждения и т.д.
Коэффициент полезного действия электродвигателя работающего на водородном топливе в несколько раз выше, чем у классического двигателя внутреннего сгорания.

Недостатки: Большой вес автомобиля. Для работы электродвигателя на водородном топливе необходимы мощные аккумуляторные батареи и водородные преобразователи тока, которые в общей конструкции весят не мало, да и габариты у них внушительные.

Дороговизна водородных топливных элементов.

При использовании водорода с традиционным топливом велика опасность взрыва и возгорания.
Несовершенные технологии хранения водородного топлива. То есть, ученые и разработчики до сих пор не решат, какой сплав использовать для баков хранения водорода.
Не разработаны необходимые стандарты хранения, транспортировки, применения водородного топлива.
Полное отсутствие водородной инфраструктуры заправок автомобилей.
Сложный и дорогой способ получений водорода в промышленных масштабах.
Прочитав о достоинствах и недостатках водородного топлива можно сделать вывод, что в свете ухудшающийся экологии, альтернативный источник энергии водород станет единственным продуктивным решением проблемы. Но, если обратится к недостаткам, то становится ясным, почему, до сих пор, серийный выпуск водородных автомобилей откладывается на неопределённый срок.



Методы получения H2:

1) Паровая конверсия метана – ПКМ. Осуществляется в мире в основном путём паровой конверсии метана при температурах 750-850 °С в химических паровых реформерах и каталитических поверхностях. На первом этапе метан и водяной пар превращаются в водород и монооксид углерода (синтез-газ). Вслед за этим «реакция сдвига» превращает монооксид углерода и воду в диоксид угле­рода и водород. Эта реакция происходит при температурах 200-250 °С. Для осуществления эндотермического процесса ПКМ сжигается около поло­вины исходного газа. При использовании паровой конверсии метана в со­четании с высокотемпературным гелиевым реактором (ВТГР) требуемая тепловая мощность ВТГР составляет в расчёте на 5 млн т водорода около 6,5 ГВт.

2) Плазменная конверсия углеводородов. . В РКЦ «Курчатовский инсти­тут» выполнены исследования плазменной конверсии природного углево­дородного топлива (метан, керосин) в синтез-газ. Эта технология может быть применена на заправочных станциях или на борту водородных авто­мобилей при использовании обычного жидкого топлива. Разработаны так­же плазмохимические методы получения водорода с помощью ВЧ- и СВЧ-технологий с использованием в качестве сырья химических соединений, в Которых водород находится в слабосвязанном состоянии, например, серо­водорода.

3) Электролитическое разложение воды (электролиз). Электролитиче­ский водород является наиболее доступным, но дорогим продуктом. Для разложения чистой воды при нормальных условиях требуется напряжение 1,24 вольта. Величина напряжения зависит от температуры и давления, от свойств электролита и других параметров электролизера. В промышлен­ных и опытно-промышленных установках реализован к.п.д. электролизера ~70-80 %, в том числе для электролиза под давлением. Паровой электро­лиз - это разновидность обычного электролиза. Часть энергии, необходи­мой для расщепления воды, в этом случае вкладывается в виде высокотем­пературного тепла в нагрев пара (до 900 °С), делая процесс более эффек­тивным. Стыковка ВТГР с высокотемпературными электролизерами по­зволит повысить суммарный кпд производства водорода из воды до 50 %.

Одним из существенных ограничений крупномасштабного электро­лизного производства водорода является потребность в драгоценных ме­таллах (платина, родий, палладий) для катализаторов, которая пропорцио­нальна мощности и, следовательно, поверхности электродов.

4) Расщепление воды. По-видимому, в ближайшем будущем методы по­лучения водорода с использованием углеродного сырья будут основными. Однако сырьевые и экологические ограничения процесса паровой конверсии метана стимулируют разработку процессов производства водорода из воды.

5) Термохимические и термоэлек­трохимические циклы. Воду можно термиче­ски разложить и при более низкой температуре, используя последователь­ность химических реакций, которые выполняют следующие функции: свя­зывание воды, отщепление водорода и кислорода, регенерация реагентов. термохимический процесс получения водорода с кпд до 50 % исполь­зует последовательность химических реакций (например, серно-кислотно-йодный процесс) и требует подвода тепла при температуре около 1000 °С. Источником тепла при термохимическом разложении воды также может служить высокотемпературный реактор. На отдельных стадиях процессов такого типа наряду с термическим воздействием для отщепления водорода может использоваться электричество (электролиз, плазма).

Понравилось? Лайкни нас на Facebook