Асинхронный двигатель презентация к уроку на тему. Коллекторный электродвигатель презентация к уроку по технологии на тему Презентация на тему электродвигатель

«КПД» - Определение КПД при подъеме тела. Архимед. Вес бруска. Соберите установку. КПД. Понятие КПД. Твердое тело. Путь S. Существование трения. Измерьте силу тяги F. Отношение полезной работы к полной работе. Реки и озера. Сделайте вычисления.

«Виды двигателей» - Электрический двигатель. Реактивный двигатель. Виды ДВС. Паровая турбина. Двигатели. Паровая машина. Энергосиловая машина, преобразующая какую-либо энергию в механическую работу. Принцип действия электродвигателя. Принцип действия паровой машины. КПД двигателя внутреннего сгорания. Кузьминский Павел Дмитриевич.

«Тепловые двигатели и окружающая среда» - Эти вещества попадают в атмосферу. Кардано Джероламо. Схема теплового двигателя. Ползунов Иван Иванович. Самолетов. Принцип действия карбюраторного двигателя. Цикл Карно. Паровая машина Дени Папена. Папен Дени. Схема рабочего процесса четырехтактного дизеля. Охрана окружающей среды. Холодильная установка.

«Использование тепловых двигателей» - Запасы внутренней энергии. В сельском хозяйстве. На водном транспорте. Количество электромобилей. Немецкий инженер Даймлер. Проследим историю развития тепловых двигателей. Проект бензинового двигателя. Воздух. Французский инженер Кюньо. Количество вредных веществ. Инженер Геро. Начало истории создания реактивных двигателей.

«Тепловые двигатели и машины» - Электромобили. Внутренняя энергия тепловых машин. Ядерный двигатель. Модель двигателя внутреннего сгорания. Недостатки электромобиля. Тепловые машины. Общий вид двигателя внутреннего сгорания. Дизель. Двухкорпусная паровая турбина. Паровая машина. Решение проблем экологии. Реактивный двигатель. Разнообразие видов тепловых машин.

«Типы тепловых двигателей» - Вред. Двигатель внутреннего сгорания. Тепловые двигатели. Паровая турбина. Краткая история развития. Типы тепловых двигателей. Уменьшение загрязнений окружающей среды. Значение тепловых двигателей. Цикл Карно. Краткая история. Ракетный двигатель.

Всего в теме 31 презентация


  • Генераторы
  • Двигатели
  • преобразуют механическую энергию в электрическую;
  • для работы генератора, его ротор (вал) надо вращать каким-либо двигателем;
  • преобразуют электрическую энергию в механическую;
  • для работы двигателя его подключают к источнику энергии

Любая машина постоянного тока может работать как в режиме генератора , так и в режиме двигателя


  • Простейшим генератором является виток, вращающийся между полюсами магнита
  • Принцип действия

основан на явлении

электромагнитной

индукции


  • При вращении витка с некоторой частотой его стороны пересекают магнитный поток Ф и в каждом проводнике индуцируется э. д. с. Е

  • Простейший электродвигатель -виток, который вращается в магнитном поле.
  • Действие двигателя

основано на

законе Ампера


  • Если подключить виток к источнику электрической энергии, то по каждому его проводнику начнет проходить электрический ток.
  • Этот ток, взаимодействуя с магнитным полем полюсов, создает электромагнитные силы F.

  • При выбранном направлении тока на проводник, расположенный под южным полюсом, будет действовать сила F, направленная вправо (по правилу левой руки), а на проводник, лежащий под северным полюсом,- сила F, направленная влево.

1 – корпус (станина )

2 – статор (индуктор )

  • На явно выраженных полюсах статора (главные полюса) расположена обмотка возбуждения , по которой проходит постоянный ток I в

3 – ротор (якорь )

4 - обмотка якоря , в которой при вращении ротора индуцируется э. д. с.


  • Эта э. д. с. снимается с обмотки якоря при помощи скользящего контакта – щеток (5), включенных между обмоткой и внешней цепью.
  • Иногда к основным полюсам добавляют дополнительные полюса

  • Для преобразования переменного тока в постоянный применяют коллектор .

Принцип его действия состоит в следующем:

  • Концы витка присоединяют к двум медным полукольцам (коллекторным пластинам ).
  • Их укрепляют на валу машины и изолируют друг от друга
  • На пластинах помещаются неподвижные щетки , отдающие электрическую энергию потребителю.

  • При вращении витка коллекторные пластины вращаются вместе с валом машины так, что каждая щетка соприкасается то с одной, то с другой пластиной.
  • Щетки на коллекторе устанавливаются так, чтобы они переходили с одной пластины на другую в тот момент, когда ЭДС в витке была ровна нулю.


  • Напряжение и ток при этом получаются постоянными по направлению, но переменными по значению.
  • Такой ток и напряжение называют

пульсирующими .


  • Для сглаживания пульсации в обмотке якоря увеличивают число витков и соответственно число коллекторных пластин.

  • Для лучшего использования обмотки якоря отдельные витки соединяют друг с другом последовательно.
  • К каждой коллекторной пластине присоединяют конец предыдущего и начало, следующего витка.

  • При вращении якоря между любыми двумя точками такой обмотки действует переменная э. д. с. Однако во внешней цепи между неподвижными щетками действует постоянная по направлению и значению э. д. с. Е
  • Следовательно, коллектор работает в качестве механического выпрямителя .
  • Чем больше витков в обмотке якоря и коллекторных пластин, тем меньше пульсируют э. д. с. и ток. Полностью освободиться от пульсации невозможно.

  • Электрический контакт с коллектором осуществляется посредством щеток , установленных в щеткодержателях.
  • Все щеткодержатели одной полярности соединены между собой медными шинами, подключенными к выводам машины.
  • Количество щеточных комплектов соответствует числу главных полюсов.
  • Щетки располагают на коллекторе по оси главных полюсов

  • Сердечник якоря набирается из листов электротехнической стали, на внешней

поверхности которых выштампованы пазы.

  • В пазы сердечника укладываются секции из медного провода. Концы секций, которые выводятся на коллектор и припаиваются к его пластинам, образуют замкнутую обмотку якоря.

Обмотка якоря

  • Петлевая - концы каждой секции присоединены к двум рядом лежащим коллекторным пластинам. Начало каждой последующей секции соединяют с концом предыдущей.
  • Волновая - получается последовательным соединением секций, находящихся под разными парами полюсов.

Обмотка якоря

  • Петлевая - в се секции укладываются в пазы за один оборот якоря.
  • при числе полюсов больше двух (6, 8 и т.д.) число параллельных ветвей и щеток равно числу полюсов.
  • Волновая –
  • число параллельных ветвей и щеток вне зависимости от числа полюсов равно двум.

«Тепловые машины» - Q1. C:\Documents and Settings\Директор\Мои документы\паровая турбина.swf. Кто и когда построил? Двигатель внутреннего сгорания. 1770г. КПД идеального теплового двигателя. Нагреватель Т1. «Младший брат» - паровоз. Рабочим веществом может быть водяной пар или газ. Средняя скорость движения 72 км/ч. С 1775 по 1785 г. – фирмой Уатта построено 56 паровых машин.

«Железная дорога» - Автодорога? Дороги Китая. Грузовые повозки. Памятный километро-вый знак на железнодорожном перегоне Кушелевка-Пискарёвка. Блокадный Ленинград. Автомобильная дорога. Крытый воз иногда называют фургоном. Станция метрополитена. Коляска - легкая маломестная повозка. Дорога пластом, прямая и уделанная. Серпантин - Извилистая горная дорога.

«Создание автомобиля» - Цели моего исследования: Подготовил ученик 11 класса МОУ «Сош п.Сланцевый Рудник» Матросов Дима. Предложить самостоятельные исследования учащимся. История создания автомобилей. Автомобилем называют устройство с мотором для передвижения пассажиров или грузов. Я считаю, что автомобиль является важным изобретением в жизни человека.

«Железнодорожный транспорт» - CEN, CENELEC. «О безопасности высокоскоростного железнодорожного транспорта». Прочие организации. Нормы и правила федеральных органов исполнительной власти. Осжд. Выступление старшего вице-президента ОАО «РЖД» В.А.ГАПАНОВИЧА. Межгосударственный технический комитет по стандартизации № 524 «Железнодорожный транспорт».

«Подвесные двигатели» - СТАЦИОНАРНЫЙ БЕНЗИНОВЫЙ ДВИГАТЕЛЬ с Z-образным приводом. Редуктор/задний ход. Двигатель. Специальные 4т масла power jet 4t 10w40. Производители рекомендуют использовать масла стандарта API SJ, SH или SG. С редуктором и классическим приводом. Система смазки подвесных 4t двигателей (outboard 4t). Гамма motul для 4т стационарных бензиновых двигателей.

«Тепловой двигатель» - Ракетный двигатель. Газотурбинный двигатель. Иван Иванович Ползунов. В отличие от поршневого двигателя, в ГТД процессы происходят в потоке движущегося газа. Традиционный ЯД в целом представляет собой конструкцию из ядерного реактора и собственно двигателя. Что такое тепловой двигатель? Дени Папен. Решение проблем экологии.

Всего в теме 31 презентация

Электрический двигатель - электрическая машина
(электромеханический преобразователь), в которой электрическая
энергия преобразуется в механическую, побочным эффектом
является выделение тепла.
Электродвигатели
Переменного тока
Синхронные
Асинхронные
Постоянного тока
Коллекторные
Бесколлекторные
Универсальные
(могут питаться
обоими видами
тока)

В основу работы любой электрической машины положен
принцип электромагнитной индукции.
Электрическая машина состоит из:
неподвижной части - статора (для асинхронных и синхронных
машин переменного тока) или индуктора (для машин
постоянного тока)
подвижной части - ротора (для асинхронных и синхронных
машин переменного тока) или якоря (для машин постоянного
тока).

Обычно ротор – это расположение магнитов в форме цилиндра,
часто образованного катушками тонкой медной проволоки.
Цилиндр имеет центральную ось и называется “ротором” потому,
что ось позволяет ему вращаться, если мотор построен
правильно. Когда через катушки ротора пропускается
электрический ток, весь ротор намагничивается. Именно так
можно создать электромагнит.

8.2 Электродвигатели переменного тока

По принципу работы двигатели переменного тока разделяются
на синхронные и асинхронные двигатели.
Синхронный электродвигатель - электродвигатель
переменного тока, ротор которого вращается синхронно
с магнитным полем питающего напряжения. Данные двигатели
обычно используются при больших мощностях (от сотен киловатт
и выше).
Асинхронный электродвигатель- электродвигатель
переменного тока, в котором частота вращения ротора отличается
от частоты вращающего магнитного поля, создаваемого питающим
напряжением. Эти двигатели наиболее распространены в
настоящее время.

Принцип действия трехфазного асинхронного электродвигателя
При включении в сеть в статоре возникает круговое вращающееся
магнитное поле, которое пронизывает короткозамкнутую обмотку
ротора и наводит в ней ток индукции. Отсюда, следуя закону
Ампера, ротор приходит во вращение. Частота вращения ротора
зависит от частоты питающего напряжения и от числа пар
магнитных полюсов. Разность между частотой вращения
магнитного поля статора и частотой вращения ротора
характеризуется скольжением. Двигатель называется асинхронным,
так как частота вращения магнитного поля статора не совпадает с
частотой вращения ротора. Синхронный двигатель имеет отличие в
конструкции ротора. Ротор выполняется либо постоянным
магнитом, либо электромагнитом, либо имеет в себе часть беличьей
клетки (для запуска) и постоянные или электромагниты. В
синхронном двигателе частота вращения магнитного поля статора и
частота вращения ротора совпадают. Для запуска используют
вспомогательные асинхронные электродвигатели, либо ротор с
короткозамкнутой обмоткой.

Трёхфазный асинхронный двигатель

Для расчета характеристик асинхронного двигателя и
исследования различных режимов его работы удобно использовать
схемы замещения.
При этом реальная асинхронная машина с электромагнитными
связями между обмотками заменяется относительно простой
электрической цепью, что позволяет существенно упростить
расчет характеристик.
С учетом того, что основные уравнения асинхронного двигателя
аналогичны таким же уравнениям трансформатора,
схема замещения двигателя такая же, как и у трансформатора.
T-образная схема замещения асинхронного двигателя

При расчете характеристик асинхронного двигателя с
использованием схемы замещения ее параметры должны быть
известны. Т-образная схема полностью отражает физические
процессы, происходящие в двигателе, но сложна при расчете
токов. Поэтому большое практическое применение для анализа
режимов работы асинхронных машин находит другая схема
замещения, в которой намагничивающая ветвь подключена
непосредственно на входе схемы, куда подводится напряжение U1.
Данная схема называется Г-образной схемой замещения.

Г-образная схема
замещения асинхронного
двигателя (а) и ее
упрощенный вариант (б)

У разных механизмов в качестве электропривода служит
асинхронный двигатель, который прост и надежен. Эти двигатели
несложны в изготовлении и дешевы по сравнению с другими
электрическими двигателями. Они широко применяются как в
промышленности, в сельском хозяйстве, так и в строительстве.
Асинхронные двигатели используются в электроприводах
различной строительной техники, в подъемных странах.
Способность работы такого двигателя в режиме повторнократковременного, дает возможность его использования в
строительных кранах. Во время отключения от сети двигатель не
охлаждается и во время работы не успевает нагреться.

8.3. Электродвигатели
постоянного тока

Коллекторный электродвигатель
Самые маленькие двигатели данного типа (единицы ватт)
применяются, в основном, в детских игрушках (рабочее
напряжение 3–9 вольт). Более мощные двигатели (десятки ватт)
применяются в современных автомобилях (рабочее напряжение
12 вольт): привод вентиляторов систем охлаждения и
вентиляции, дворников.

Коллекторные двигатели могут преобразовывать, как
электрическую энергию в механическую, так и наоборот. Из этого
следует, что он может работать, как двигатель и как генератор.
Рассмотрим принцип действия на электродвигателе.
Из законов физики известно, что, если через проводник,
находящийся в магнитном поле пропустить ток, то на него начнет
действовать сила.
Причем, по правилу правой руки. Магнитное поле направлено от
северного полюса N к южному S, если ладонь руки направить в
сторону северного полюса, а четыре пальца по направлению тока
в проводнике, то большой палец укажет направление
действующей силы на проводник. Вот основа работы
коллекторного двигателя.

Но как мы знаем маленькие правила и создают нужные вещи. На
этой основе была создана рамка вращающаяся в магнитном поле.
Для наглядности рамка показана в один виток. Как и в прошлом
примере, в магнитном поле помещены два проводника, только ток в
этих проводниках направлен в противоположные стороны,
следовательно и силы то же. В сумме эти силы дают крутящий
момент. Но это еще теория.

На следующем этапе был создан простой коллекторный двигатель.
Отличается он от рамки наличием коллектора. Он обеспечивает
одинаковое направление тока над северным и южным полюсами.
Недостаток данного двигателя в неравномерности вращения и
невозможности работать на переменном напряжении.
Следующим этапом неравномерность хода устранили путем
размещения на якоре еще нескольких рамок (катушек), а от
постоянного напряжения отошли заменой постоянных магнитов
на катушки, намотанные на полюс статора. При протекании
переменного тока через катушки изменяется направление тока, как
в обмотках статора, так и якоря, следовательно, крутящий момент,
как при постоянном, так и при переменном напряжении будет
направлен в одну и ту же сторону, что и требовалось доказать.

Устройство коллекторного электродвигателя

Бесколлекторный электродвигатель
Бесколлекторные двигатели постоянного тока называют так же
вентильными. Конструктивно бесколлекторный двигатель состоит
из ротора с постоянными магнитами и статора с обмотками. В
коллекторном двигателе наоборот, обмотки находятся на роторе.

«КПД» - Сделайте вычисления. Соберите установку. Путь S. Измерьте силу тяги F. Реки и озера. Отношение полезной работы к полной работе. Твердое тело. Существование трения. КПД. Архимед. Понятие КПД. Вес бруска. Определение КПД при подъеме тела.

«Виды двигателей» - Виды паровозов. Паровая машина. Дизель. КПД дизельных двигателей. Кузьминский Павел Дмитриевич. Двигатели. Реактивный двигатель. Двигатель внутреннего сгорания. Паровая турбина. Принцип действия паровой машины. Как это было (первооткрыватели). Принцип действия электродвигателя. Папен (Papin) Дени. Энергосиловая машина, преобразующая какую-либо энергию в механическую работу.

«Использование тепловых двигателей» - Транспортные средства. Состояние зеленой природы. Проект бензинового двигателя. В автомобильном транспорте. Архимед. Внутренняя энергия пара. Тепловые двигатели. Немецкий инженер Даймлер. Количество вредных веществ. Озеленить города. Начало истории создания реактивных двигателей. Количество электромобилей.

«Тепловые двигатели и их виды» - Паровая турбины. Тепловые машины. Паровая машина. Двигатель внутреннего сгорания. Внутренняя энергия. Газовая турбина. Разнообразие видов тепловых машин. Реактивный двигатель. Дизель. Виды тепловых двигателей.

«Тепловые двигатели и окружающая среда» - Тепловые двигатели. Ньюкомен Томас. Цикл Карно. Холодильная установка. Различные части ландшафта. Кардано Джероламо. Карно Никола Леонард Сади. Папен Дени. Принцип действия инжекторного двигателя. Паровая турбина. Принцип действия карбюраторного двигателя. Эти вещества попадают в атмосферу. Двигатели внутреннего сгорания автомобилей.

«Тепловые двигатели и машины» - Преимущества электромобиля. Виды двигателей внутреннего сгорания. Виды тепловых двигателей. Ядерный двигатель. Недостатки электромобиля. Такты работы двухтактного двигателя. Дизель. Схема работы. Разнообразие видов тепловых машин. Такты работы четырехтактного двигателя. Тепловые машины. Газовая турбина.

Всего в теме 31 презентация

Понравилось? Лайкни нас на Facebook