Машины с гидростатической трансмиссией показать. Гидротрансмиссия своими руками. Гидродинамическая передача в а втоматическая коробка передач

Гидростатические передачи


В течение первый двух десятилетий существования автомобильной промышленности был предложен ряд гидропередач, в которых жидкость под давлением, создаваемым насосом, приводимым в действие двигателем, протекает через гидромотор. В результате перемещения под действием жидкости рабочих органов гидромотора к его валу подводится мощность. Жидкость, конечно, несет некоторый запас кинетической энергии, однако, поскольку она выходит из гидромотора с той же скоростью, с которой и входит в него, то величина кинетической энергии не изменяется и, следовательно, не принимает участия в передаче мощности.

Несколько позднее появился другой тип гидропередачи, в которой в одном картере размещаются оба вращающихся элемента - и колесо насоса, приводящее в движение жидкость, и турбина, в лопатки которой ударяется движущаяся жидкость. В таких передачах жидкость выходит из каналов между лопатками ведомого элемента с гораздо меньшей абсолютной скоростью, чем входит в них, и мощность передается через жидкость в форме кинетической энергии.

Таким образом, следует различать два типа гидропередач: гидростатические или объемные передачи, в которых энергия передается давлением жидкости, действующим на движущиеся поршни или лопасти, и гидродинамические передачи, в которых энергия передается за счет увеличения абсолютной скорости жидкости в колесе насоса и уменьшения абсолютной скорости в турбине

Передача движения или мощности с помощью давления жидкости с большим успехом используется в ряде областей. Примером успешного применения подобных передач являются гидравлические системы современных станков. Другими примерами являются гидроприводы рулевых механизмов судов и управления орудийными башнями боевых короблей. С точки зрения применения на автомобилях наиболее выгодным свойством гидростатической передачи является возможность бесступенчатого изменения передаточного отношения. Для этого только необходим насос, в котором объем, описываемый поршнями за один оборот вала, может плавно изменяться во время работы. Другим преимуществом гидростатической передачи является простота получения заднего хода. В большинстве конструкций перемещение органа управления дальше положения, соответствующего нулевой скорости, и передаточного отношения, равного бесконечности, вызывает вращение в обратном направлении с постепенно нарастающей скоростью.

Использование масла в качестве рабочей“жидкости. В переводе термин «гидравлический» означает использование воды в качестве рабочей жидкости. Однако на практике, употребляя этот термин, обычно подразумевают применение любой жидкости для передачи движения или мощности. В гидравлических трансмиссиях всех типов используются минеральные масла, так как они защищают механизм от коррозии и одновременно обеспечивают его смазку. Обычно применяют маловязкие масла, так как внутренние потери возрастают с повышением вязкости. Однако чем меньше вязкость, тем труднее предотвратить утечку рабочей жидкости.

Применение гидростатических передач на автомобилях никогда не выходило из стадии эксперимента. Однако были достигнуты некоторые успехи в области использования этих передач на железнодорожном транспорте. На выставке транспортных средств в германском городе Седдин, состоявшейся в середине 20-х годов, на семи из восьми демонстрировавшихся маневровых тепловозов были установлены гидропередачи. Эти передачи очень удобны в управлении. Поскольку они позволяют получать любое передаточное отношение, то двигатель может всегда работать с тем числом оборотов в минуту, которому соответствует наиболее высокий к. п. д.

Одним из серьезных недостатков, препятствующих использованию гидростатических передач на автомобилях, является зависимость их к. п. д. от скорости. В литературе опубликованы данные, согласно которым максимальный к. п. д. подобных передач достигает 80%, что вполне приемлемо. Однако необходимо иметь в виду, что максимальный к. п. д. всегда достигается при низких рабочих скоростях.

Зависимость к. п. д. от скорости. В гидростатических передачах происходит турбулентное протекание жидкости, а при турбулентном движении потери (выделение тепла) прямо пропорциональны третьей степени скорости, в то время как передаваемая гидростатической передачей мощность изменяется прямо пропорционально скорости потока. Поэтому при повышении скорости потока к. п. д. быстро падает. Большинство известных данных о к. п. д. гидростатических передач относится к скорости вращения, значительно меньшей 1000 об/мин (обычно 500-700 об/мин); если же использовать подобные передачи для работы с двигателем, нормальная скорость вращения коленчатого вала которого составляет свыше 2000 об/мин, то к. п. д. будет недопустимо низким. Конечно, между двигателем и насосом гидростатической передачи можно установить шестеренчатый редуктор. Однако от этого передача усложнилась бы еще на один агрегат, а тихоходные насос и гидромотор оказались бы излишне тяжелыми. Другим недостатком является использование в гидростатических передачах высоких давлений, доходящих до 140 кг!см2, при которых, естественно, весьма трудно предотвратить утечку рабочей жидкости. Более того, все детали, подвергающиеся воздействию таких давлений, должны быть очень прочными

Гидростатические передачи не получили распространения в автомобилях отнюдь не потому, что им недостаточно уделяли внимания. Целый ряд американских и европейских фирм, располагавших достаточными техническими и денежными средствами, занимались созданием гидростатических передач, в большинстве случаев имея в виду использовать этй передачи на автомобилях. Однако, насколько известно автору, грузовые автомобили с гидростатическими передачами так и не поступили в производство. В тех случаях, когда фирмы выпускали гидростатические передачи в течение некоторого времени, они находили им сбыт в других отраслях машиностроения, где высокие скорости вращения и низкий вес не являются обязательными условиями применения. Было предложено несколько остроумных конструкций гидростатических трансмиссий, две из которых описаны ниже.

Передача Мэнли. Одной из первых автомобильных гидростатических передач, созданных в США , является передача Мэнли. Она была изобретена Чарльзом Мэнли, сотрудником пионера воздухоплавания Ланглея и председателем Общества американских автомобильных инженеров. Передача состояла из пятицилиндрового радиального поршневого насоса с переменным ходом поршней и пятицилиндрового радиального поршневого гидромотора с постоянным ходом поршней; насос соединялся с гидромотором двумя трубопроводами. При изменении направления вращения нагнетательный трубопровод становился отсасывающим, и наоборот; при уменьшении хода поршня насоса до нуля гидромотор выполнял роль тормоза. Для предотвращения повреждения механизма от чрезмерного давления применялся предохранительный клапан, открывавшийся при давлении 140 кг/см2.

Продольный разрез передачи Мэнли представлен на рис. 1. Насос и гидромотор были расположены соосно рядом друг с другом, образуя единый компактный агрегат. Слева дан разрез одного из цилиндров насоса. Зазор между поршнем и цилиндром был очень невелик, и поршни не имели уплотнительных колец. Нижние головки шатунов не охватывали кривошип, а имели форму секторов и Удерживались двумя кольцами, расположенными по обе стороны головки шатуна. Изменение хода поршней насоса осуществлялось при помощи эксцентриков, установленных на коленчатом валу. При работе агрегата коленчатый вал и эксцентрики оставались неподвижными, а блок цилиндров вращался вокруг оси эксцентриков Е. На фигуре механизм изображен в положении, соответствующем максимальному ходу поршня, равного сумме радиуса кривошипа и эксцентрицитета ее эксцентрика; цилиндры вращаются вокруг оси Е, а поршни насоса -- вокруг оси Р. Для уменьшения хода поршней эксцентрик поворачивается вокруг оси Е в одном направлении, а кривошип - вокруг оси в противоположном направлении; благодаря этому угловое положение кривошипа остается неизменным, и распределительный механизм продолжает работать по-прежнему. Управление осуществляется с помощью двух червячных колес, установленных на эксцентрике, одно из которых посажено свободно, з второе закреплено. Свободно сидящее червячное колесо связано с коленчатым валом посредством шестерни, укрепленной на колнечатом валу, которая зацепляется с внутренними зубьями, выполненными на червячном колесе. Червячные колеса находятся в зацеплении с червяками, соединенными между собой двумя цилиндрическими шестернями. Таким образом, червяки всегда вращаются в противоположных направлениях, а передача была спроектирована так, что угловые перемещения эксцентрика и кривошипа были равны по абсолютной величине и противоположны по направлению. Если эксцентрик и кривошип поворачивались на угол 90°, то ход поршней насоса становился равным нулю. Эксцентрик распределительного механизма был установлен под углом 90° к плечу кривошипа. Гидромотор отличается от насоса лишь тем, что не имеет механизма изменения хода поршней. Как насос, так и гидромотор имеют золотниковые клапаны, управляемые эксцентриками.

Рис. 1. Гидростатическая передача Мэнли:
1 - насос; 2 - гидромотор.

Рис. 2. Эксцентриковое управление передачей Мэнли.

Передача Мэнли, предназначавшаяся для применения на грузовом автомобиле грузоподъемностью 5 г с бензиновым двигателем мощностью 24 л. с. при 1200 об/мин, имела насос с цилиндрами диаметром 62,5 мм и максимальным ходом поршней 38 мм. Насос работал на два гидромотора (по одному на каждое ведущее колесо). При рабочем объеме пятицилиндрового насоса, равном 604 см3 для передачи 24 л. с. при 1200 об/мин, при максимальном ходе поршней требовалось давление 14 кг/см2. При испытаниях передачи Мэнли в лаборатории было установлено, что пик к. п. д. имел место при 740 об/мин вала насоса и составлял 90,9%. При дальнейшем увеличении скорости вращения к. п. д. резко падал и уже при 760 об/мин составлял только 81,6%.

Рис. 3. Гидростатическая передача Дженней.

Передача Дженней. Гидропередача Дженней уже давно строится фирмой Уотербюри Тул Компани для различных отраслей промышленности; в частности, она также устанавливалась на грузовых автомобилях, автомотрисах и тепловозах. Эта передача состоит из многоцилиндрового поршенькового насоса с качающейся шайбой и переменным ходом и такого же гидромотора, но с постоянным ходом поршеньков. Продольный разрез агрегата представлен на Рис. 144. Разница в устройстве насоса и гидромотора заключается лишь в том, что в первом наклон качающейся шайбы может изменяться, а во втором - не может. Валы насоса и гидромотора выступают каждый с одного конца. Каждый вал опирается на подшипник скольжения в картере и на роликовый подшипник в распределительной плите. К внутреннему концу каждого вала прикреплен блок цилиндров, который имеет девять отверстий, образующих цилиндры. Оси этих цилиндров параллельны оси вращения и находятся на равном расстоянии от нее. При вращении блоков цилиндров головки цилиндров скользят по распределительной плите. Отверстия в головке каждого цилиндра периодически сообщаются с одним из двух окон в распределительной плите, выполненных по дуге круга; таким образом осуществляется подача и выпуск рабочей жидкости. Длина каждого окна по дуге составляет около 125°, а так как сообщение цилиндра с каналом в плите начинается с момента, когда отверстие в головке цилиндра начинает совмещаться с окном, и продолжается до тех пор, пока окно в плите не будет перекрыто кромкой отверстия, то фаза открытия составляет около 180°.

Установленные на валах пружины служат для того, чтобы прижимать блоки цилиндров к распределительной плите в то время, когда нагрузка не передается. При передаче нагрузки контакт обеспечивается давлением жидкости. Блоки цилиндров установлены на валах таким образом, что они могут скользить и слегка качаться на них. Это обеспечивает плотное прилегание блока цилиндров к распределительной плите даже при некоторой неточности изготовления, а также в случае наличия износа.

Зазор между поршеньком и цилиндром составляет 0,025 мм, и поршеньки не имеют никаких уплотнительных устройств. Каждый поршенек соединен с шарнирным кольцом посредством шатуна со сферическими головками. Тело шатуна имеет продольное отверстие, а в днище каждого поршенька также сделано отверстие. Таким образом, головки шатуна смазываются маслом из основного потока жидкости и давление, под которым масло подается к опорным поверхностям, пропорционально нагрузке. Каждая качающаяся шайба присоединена к валам посредством карданных шарниров таким образом, что, когда она вращается вместе с валом, ее плоскость вращения может составлять любой угол с осью вала. В насосе угол наклона качающейся шайбы может изменяться в пределах от 0 до 20° в любом направлении. Это достигается при помощи рукоятки управления, связанной с поворачивающимся гнездом подшипника. В гидромоторе гнездо подшипника жестко прикреплено к картеру под углом 20°.

В тех случаях, когда качающаяся шайба составляет прямой угол с валом, при вращении блока цилиндров поршеньки не будут перемещаться в цилиндрах; соответственно не будет происходить подачи масла. Но как только угол между качающейся шайбой и осью вала будет изменен, поршеньки начнут перемещаться в цилиндрах. На протяжении одной половины оборота в цилиндр засасывается масло через отверстие в распределительной плите; в течение второй половины оборота масло нагнетается через нагнетательное отверстие в распределительной плите.

Масло, подаваемое под давлением в гидромотор, заставляет поршеньки гидромотора перемещаться, и силы, действующие на качающуюся шайбу через шатуны, заставляют вращаться блок цилиндров и его вал. В том случае, когда угол наклона качающейся шайбы насоса равен углу наклона качающейся шайбы гидрОМотооа вал последнего будет вращаться с такой же скоростью что и вал’ насоса; уменьшение скорости вращения вала гидромотора может быть достигнуто путем уменьшения угла между качающейся шай бой насоса и валом.

В передаче, построенной для автомотрисы с двигателем мощностью 150 л., е., к. п. д. при 25%-ной нагрузке и максимальной скорости вращения составлял 65%, а при максимальной нагрузке - 82%. Передача этого типа имеет значительный вес; приведенный в качестве примера агрегат имел удельный вес, равный 11,3 кг на 1 л. с. передаваемой мощности.

К атегория: - Автомобильные сцепления

Гидростатические трансмиссии, выполненные по закрытой гидросхеме, нашли широкое применение в приводах хода спецтехники. В основном это машины, у которых движение является одной из основных функций, например, фронтальные погрузчики, бульдозеры, экскаваторы-погрузчики, с/х комбайны,
лесозаготовительные форвардеры и харвесторы.

В гидросистемах таких машин регулирование потока рабочей жидкости осуществляется в широком диапазоне как насосом, так и гидромотором. Закрытые гидросхемы часто используются для привода рабочих органов вращательного движения: бетоносмесители, буровые установки, лебедки и т.п.

Рассмотрим типовую структурную гидросхему машины и выделим в ней контур гидростатической трансмиссии хода. Существует много исполнений закрытых гидростатических трансмиссий, в которых гидросистема включает насос с переменным рабочим объемом, обычно с наклонной шайбой, и регулируемый гидромотор.

Гидромоторы в основном используются радиально-поршневые или аксиально-поршневые с наклонным блоком цилиндров. В малогабаритной технике часто применяются аксиально-поршневые гидромоторы с наклонной шайбой с постоянным рабочим объемом и героторные гидромашины.

Управление рабочим объемом насоса осуществляется пропорциональной гидравлической или электрогидравлической пилотной системой или прямым сервоуправлением. Для автоматического изменения параметров гидродвигателя в зависимости от действия внешней нагрузки в управлении насосом
используются регуляторы.

Например, регулятор мощности в гидростатических трансмиссиях хода позволяет без вмешательства оператора снизить скорость машины при возрастающем сопротивлении движению и даже полностью остановить ее, не позволяя двигателю заглохнуть.

Регулятор давления обеспечивает постоянный крутящий момент рабочего органа при всех режимах работы (например, силу резания вращающейся фрезы, шнека, шарошки буровой установки и т.п.). В любых каскадах управления насосом и гидромотором пилотное давление не превышает 2,0-3,0 МПа (20-30 бар).

Рис. 1. Типовая схема гидростатической трансмиссии спецтехники

На рис. 1 показана распространенная схема гидростатической трансмиссии хода машины. В пилотную гидросистему (систему управления насосом) включен пропорциональный клапан, управляемый педалью хода. Фактически это механически управляемый редукционный клапан.

Он питается от вспомогательного насоса системы восполнения утечек (подпитки). В зависимости от степени нажатия на педаль пропорциональный клапан регулирует величину пилотного потока, поступающего в цилиндр (в реальной конструкции – плунжер) управления наклоном шайбы.

Давление управления преодолевает сопротивление пружины цилиндра и поворачивает шайбу, изменяя величину рабочего объема насоса. Таким образом, оператор изменяет скорость машины. Реверс силового потока в гидросистеме, т.е. изменение направления движения машины осуществляется соленоидом «А».

Соленоид «В» управляет регулятором гидромотора, который устанавливает максимальный или минимальный его рабочий объем. В транспортном режиме движения машины устанавливается минимальный рабочий объем гидромотора, благодаря которому он развивает максимальную частоту вращения вала.

В период выполнения машиной силовых технологических операций устанавливается максимальный рабочий объем гидромотора. В этом случае он развивает максимальный крутящий момент при минимальной частоте вращения вала.

При достижении уровня максимального давления в силовом контуре 28,5 МПа управляющий каскад автоматически уменьшит угол наклона шайбы до 0° и защитит насос и всю гидросистему от перегрузки. Ко многим мобильным машинам с гидростатической трансмиссией предъявляются жесткие требования.

Они должны обладать высокой скоростью (до 40 км/ч) в транспортном режиме и преодолевать большие силы сопротивления при выполнении силовыхтехнологических операций, т.е. развивать максимальную тяговую силу. Примером могут служить колесные фронтальные погрузчики, сельскохозяйственные и лесозаготовительные машины.

В гидростатических трансмиссиях хода таких машин используются регулируемые гидромоторы с наклонным блоком цилиндров. Как правило, это регулирование релейное, т.е. обеспечивает две позиции: максимальный или минимальный рабочий объем гидромотора.

Вместе с тем существуют гидростатические трансмиссии, которые требуют пропорционального управления рабочим объемом гидромотора. При максимальном рабочем объеме крутящий момент генерируется при высоком давлении в гидросистеме.

Рис. 2. Схема действия сил в гидромоторе при максимальном рабочем объеме

На рис. 2 изображена схема действия сил в гидромоторе при максимальном рабочем объеме. Гидравлическая сила Fг раскладывается на осевую Fо и радиальную Fр. Радиальная сила Fр создает крутящий момент.

Поэтому, чем больше угол α (угол наклона блока цилиндров), тем выше сила Fр (крутящий момент). Плечо действия силы Fр, равное расстоянию от оси вращения вала до точки контакта поршня в обойме гидромотора, остается постоянным.

Рис. 3. Схема действия сил в гидромоторе при движении к минимальному рабочему объему

Когда угол наклона блока цилиндров уменьшается (угол α), т.е. рабочий объем гидромотора стремится к своему минимальному значению, сила Fр, а следовательно, крутящий момент на валу гидромотора также уменьшается. Схема действия сил в этом случае показана на рис. 3.

Характер изменения крутящего момента наглядно виден из сравнения векторных диаграмм для каждого угла наклона блока цилиндров гидромотора. Подобное управление рабочим объемом гидромотора широко используется в гидроприводах различных машин и оборудования.

Рис. 4. Схема типового управления гидромотором силовой лебедки

На рис. 4 показана схема типового управления гидромотором силовой лебедки. Здесь каналы А и В являются рабочими портами гидромотора.

В зависимости от направления движения силового потока рабочей жидкости в них обеспечивается прямое или реверсивное вращение. В показанной позиции у гидромотора максимальный рабочий объем. Рабочий объем гидромотора меняется при подачеуправляющего сигнала в его порт Х.

Пилотный поток рабочей жидкости, проходя через золотник управления, воздействует на плунжер перемещения блока цилиндров, который, поворачиваясь с высокой скоростью, быстро изменяет величину рабочего объема гидромотора.

Рис. 5. Характеристика управления гидромотором

На графике на рис. 5 показана характеристика управления гидромотором, она носит линейный характер обратной функции. Часто в сложных машинах для привода рабочих органов используются раздельные гидравлические контуры.

При этом одни из них выполнены по открытой гидравлической схеме, другие требуют использования гидростатических трансмиссий. В качестве примера можно привести полноповоротный одноковшовый экскаватор. В нем вращение поворотной платформы и движение машины обеспечивают гидромоторы с
группой клапанов.

Конструктивно клапанная коробка устанавливается непосредственно на гидромоторе. Питание контура гидростатической трансмиссии от гидронасоса, работающего по открытой гидросхеме, осуществляется с помощью гидрораспределителя.

Рис. 6. Схема контура гидростатической трансмиссии, питаемого из открытой гидросистемы

Он обеспечивает подачу силового потока рабочей жидкости в контур гидростатической трансмиссии в прямом или обратном направлении. Схема такого гидравлического контура показана на рис.6.

Здесь изменение рабочего объема гидромотора осуществляется плунжером, управляемым пилотным золотником. На пилотный золотник может действовать как внешний сигнал управления, передаваемый по каналу Х, так и внутренний от избирательного клапана «ИЛИ».

Как только в нагнетательную линию гидроконтура подается силовой поток рабочей жидкости, избирательный клапан «ИЛИ» открывает доступ сигналу управления к торцу пилотного золотника и он, открывая рабочие окна, направляет порцию жидкости в плунжер привода блока цилиндров.

В зависимости от величины давления в нагнетательной линии рабочий объем гидромотора меняется от нормальной позиции в сторону своего уменьшения (высокая скорость/низкий крутящий момент) или увеличения (низкая скорость/высокий крутящий момент). Таким способом осуществляется управление
движением.

Если золотник силового гидрораспределителя переместился в противоположную позицию, направление движения силового потока изменится. Избирательный клапан «ИЛИ» займет другую позицию и направит сигнал управления в пилотный золотник из другой линии гидроконтура. Регулирование гидромотора осуществится аналогично.

Помимо управляющих компонентов данный гидроконтур содержит два комбинированных (антикавитационный и антишоковый) клапана, настроенных на пиковое давление 28,0 МПа, и систему вентиляции рабочей жидкости, предназначенную для принудительного ее охлаждения.

Во многих современных машинах и механизмах используется новая гидростатическая трансмиссия. Несомненно, она устанавливается в более дорогих моделях мини тракторов и поскольку переключать скорости не нужно, то её можно назвать автоматической.

Такая трансмиссия отличается от механической коробки передач тем, что в ней нет шестерён, а вместо них используется гидравлическое оборудование, которое состоит из гидравлического насоса и гидравлического двигателя переменного объёма.

Управление такой трансмиссией осуществляется одной педалью, а сцепление в таком тракторе служит для включения вала отбора мощности. Перед запуском двигателя, проверяем тормоз, нажав на него, затем выжимаем сцепление и устанавливаем ручку отбора мощности в нейтральное положение. После этого, поворачиваем ключ и заводим трактор.

Направление движения, осуществляется реверсом, устанавливаем рычаг реверса в положение вперёд, нажимаем на педаль хода, и поехали. Чем сильнее мы нажимаем на педаль, тем быстрее едем. Если отпустить педаль, трактор останавливается. Если скорости не достаточно, то необходимо увеличить газ, специальным рычагом.

Гидравлическая трансмиссия - совокупность гидравлических устройств, позволяющих соединить источник механической энергии (двигатель) с исполнительными механизмами машины (колесами автомобиля, шпинделем станка и т.д.) . Гидротранмиссию также называют гидравлической передачей. Как правило в гидравлической трансмиссии происходит передача энергии посредством жидкости от насоса к гидромотору (турбине).

В представленном ролике в качестве выходного звена использован гидродвигатель поступательного движения. В гидростатической трансмиссии используется гидродвигатель вращательного движения, но принцип работы, по-прежнему остается основанным на законе . В гидростатическом приводе вращательного действия рабочая жидкость подается от насоса к мотору . При этом в зависимости от рабочих объемов гидромашин могут изменяться момент и частота вращения валов. Гидравлическая трансмиссия обладает всеми достоинствами гидравлического привода: высокой передаваемой мощностью, возможностью реализации больших передаточных чисел, осуществления бесступенчатого регулирования, возможностью передачи мощности на подвижные, перемещающиеся элементы машины .

Способы регулирования в гидростатической трансмиссии

Регулирование скорости выходного вала в гидравлической трансмиссии может осуществлять путем изменения объема рабочего насоса (объемное регулирование), или с помощью установки дросселя либо регулятора расхода (параллельное и последовательное дроссельное регулирование). На рисунке показана гидротрансмиссия с объемным регулированием с замкнутым контуром.

Гидротрансмиссия с замкнутым контуром

Гидравлическая трансмиссия может быть реализована по замкнутому типу (закрытый контур), в этом случае в гидросистеме отсутствует гидравлический бак, соединенный с атмосферой.

В гидравлических системах замкнутого типа регулирование скорости вращения вала может осуществляться путем изменения рабочего объема насоса. В качестве насос-моторов в гидростатической трансмиссии чаще всего используют .

Гидротрансмиссия с открытым контуром

Открытой называют гидравлическую систему соединенную с баком, который сообщается с атмосферой, т.е. давление над свободной поверхностью рабочей жидкости в баке равно атмосферному. В гидротрасмиссиях отрытого типа возможно реализовать объемное, параллельное и последовательное дроссельное регулирование. На следующем рисунке показана гидростатическая трансмиссия с отрытым контуром.


Где используют гидростатические трансмиссии

Гидростатические трансмиссии используют в машинах и механизмах где необходимо реализовать передачу больших мощностей, создать высокий момент на выходном валу, осуществлять бесступенчатое регулирование скорости.

Гидростатические трансмиссии широко применяются в мобильной, дорожно-строительной технике, экскаваторах бульдозерах, на железнодорожном транспорте - в тепловозах и путевых машинах.

Гидродинамическая трансмиссия

В гидродинамических трансмиссиях для передачи мощности используются и турбины. Рабочая жидкость в гидравлических трансмиссиях подается от динамического насоса к турбине. Чаще всего в гидродинамической трансмиссии используются лопастные насосное и турбинное колесо, расположенные непосредственно друг напротив друга, таким образом, что жидкость поступает от насосного колеса сразу к турбинному минуя трубопроводы. Такие устройства объединяющие насосное и турбинное колесо называются гидромуфтами и гидротрансформаторами, которые не смотря на некоторые похожие элементы в конструкции имеют ряд отличий.

Гидромуфта

Гидродинамическую передачу, состоящую из насосного и турбинного колеса , установленных в общем картере называют гидромуфтой . Момент на выходном валу гидравлической муфты равен моменту на входном валу, то есть гидромуфта не позволяет изменить вращающий момент. В гидравлической трансмиссии передача мощности может осуществляться через гидравлическую муфту, которая обеспечит плавность хода, плавное нарастание крутящего момента, снижение ударных нагрузок.

Гидротрансформатор

Гидродинамическая передача, в состав которой входят насосное, турбинное и реакторное колеса , размещенные в едином корпусе называется гидротрансформатором. Благодаря реактору, гидротрасформатор позволяет изменить вращающий момент на выходном валу.

Гидродинамическая передача в а втоматическая коробка передач

Самым известным примером применения гидравлической передачи является автоматическая коробка передач автомобиля , в которой может быть установлены гидромуфта или гидротрансформатор. По причине более высоко КПД гидротрансформатора (по сравнению с гидромуфтой), он устанавливается на большинство современных автомобилей с автоматической коробкой передач.

Понравилось? Лайкни нас на Facebook