Голографический экран: описание, устройство, принцип работы. Основные информационные технологии связи водителя и автомобиля Голографические информационные дисплеи в автомобиле

Первая голограмма была получена венгерским физиком Денешом Габором в 1947 году в ходе экспериментов по повышению разрешающей способности электронных микроскопов. Он придумал само слово «голограмма», желая подчеркнуть полную запись оптических свойств объекта. Денеш немного опередил свое время: его голограммы отличались низким качеством из-за использования газоразрядных ламп. После изобретения в 1960 году рубиново-красного и гелий-неонового лазеров голография начала активно развиваться. В 1968 году советский учёный Юрий Николаевич Денисюк разработал схему записи голограмм на прозрачных фотопластинках и получил высококачественные голограммы. А 11 годами позже Ллойд Кросс создал мультиплексную голограмму, состоящую из нескольких десятков ракурсов, каждый из которых можно увидеть только под одним углом. Как же работает современный голографический дисплей - об этом в сегодняшнем выпуске!

Основным фотоматериалом для записи голограмм являются специальные фотопластинки на основе традиционного бромида серебра, позволяющие достичь разрешающей способности более 5000 линий на миллиметр. Также применяются фотопластинки на основе бихромированной желатины, обладающие большей разрешающей способностью. При их использовании до 90% падающего света преобразуется в изображение, что позволяет записывать очень яркие голограммы. Активно разрабатываются и среды на основе голографических фотополимерных материалов. Эту многокомпонентную смесь органических веществ наносят в виде тонкой плёнки на стеклянную или плёночную подложку.

Что касается голографических дисплеев, то существует несколько перспективных разработок, заслуживающих внимания. Компания RED Digital Cinema ведет работу над голографическим дисплеем, который представляет собой жидкокристаллическую панель со специальной светопроводящей пластиной, расположенной под ней. Она использует дифракцию для проецирования разных изображений под разными углами обзора, что приводит к иллюзии «трехмерного изображения». Смартфон Hydrogen с голографическим дисплеем должен выйти в свет в первой половине 2018 года.

Уже существуют на рынке дисплеи марки HoloVisio от венгерской компании Holografika. Суть их технологии заключается в проецировании картинки двумя десятками узконаправленных проекторов, благодаря чему изображение раскладывается в пространстве вглубь дисплея. Сложность этой технологии сказывается на цене: стоимость 72-дюймового экрана с разрешением 1280 на 768 пикселей составляет порядка 500 тысяч долларов.

А объединение японских учёных уже долгое время работает над созданием лазерной проекционной технологии Aerial 3D. Они отказались от традиционного плоского экрана, рисуя объекты в трёхмерном пространстве с помощью лазерных лучей. Aerial 3D использует эффект возбуждения атомов кислорода и азота фокусированными лазерными лучами. В данный момент система способна проецировать объекты, состоящие из 50 000 точек с частотой до 15 кадров в секунду.

Заслуживает внимания и разработка Microsoft под названием Vermeer, представляющая собой голографический безэкранный дисплей и видеокамеру, придающую системе сенсорные функции. Дисплей использует технологию проекции между двух параболических зеркал. Лазерный луч рисует изображение с частотой 2880 раз в секунду, последовательно проходя по 192 точкам. В результате зритель видит в пространстве картинку, обновляемую 15 раз в секунду и доступную для контакта.

Вполне возможно, что уже в недалеком будущем голографические экраны станут более доступными и получат массовое применение.

Чего ожидать в ближайшие годы? Почему и как твой автомобиль станет умным? В каком направлении будет развиваться автомобильная сфера? Какие технологии уже доступны и какие ждут тебя?

Очень много вещей может поменяться всего лишь за одно десятилетие. Например каждые 5 лет компьютерная техника сильно устаревает . Правда до технологий как в фильме Звездные Войны , нам еще далеко.

Начнем. К примеру, если ты читаешь этот текст, значит, у тебя есть доступ к интернету. А если вернуться назад, например в 1995 год , интернет был доступен очень малому кругу лиц, впрочем, как и компьютер. Но с тех пор все резко изменилось. Теперь доступ в интернет можно получить и с телефона, с плеера , выбрать провайдера, больше подходящего под ваши потребности и финансовые возможности, и так далее.

То же самое и с автомобилями, где даже китайцы успели внедрить новую систему Android в свой автомобиль. Кстати, раньше встретить такое количество подушек безопасности в самых разных вариантах (боковые, защищающие колени и т. д.) нельзя было ни на одной машине.

Электромобили можно было встретить только на полях для гольфа . Автомобили тоже меняются, и скорость внедрения новых технологий с каждым годом будет только увеличиваться.

Интернет и автомобиль?

OnStar
Есть возможность удаленно замедлять транспорт, мешая угонщикам скрыться от полиции при погоне. Теперь появилась новая возможность, которая поможет вернуть украденные машины за часы, если не за минуты.

Новая технология называется Remote Ignition Block (удаленная блокировка зажигания ). У оператора OnStar есть возможность послать сигнал компьютеру в угнанной машине, который вызовет блокировку системы зажигания и не позволит перезапустить её.

"Эта возможность не только поможет властям возвратить украденные автомобили, но также и предотвратит опасные погони "

Голографические информационные дисплеи

Подобные системы можно увидеть у или . Суть в том, чтобы выводить информацию непосредственно на лобовое стекло . Сейчас есть действующие модели, способные выводить информацию о скорости, направлении движения и другую. А в недалеком будущем мы сможем и ориентироваться на дороге, даже не видя ее. Например, компания General Motors уже сделала первые шаги в этом направлении.

Сейчас General Motors в сотрудничестве с рядом университетов приступила к разработке так называемого «умного стекла ». GM рассчитывает превратить стекло в прозрачный дисплей, на который может быть выведена такая информация, как дорожная разметка, дорожные знаки или различные объекты, такие как пешеходы , которых в туман или дождь распознать на дороге бывает весьма проблематично.

Частично такая технология была показана на Light Car , где с помощью светодиодной технологией LED, автомобиль использует прозрачную заднюю дверь как проекционный экран, для видимой связи между машинами, что очень полезно для всех автомобилистов. Например, с какой силой жмет на тормоза водитель можно показать автомобилю, который едет сзади при освещении масштаба картинки на дисплее.

Общение вашего автомобиля не только с другими машинами, но и с инфраструктурой!

Скоро все автомобили будут связаны между собой и дорожной структурой в единое целое, в единую сеть, которая уже сейчас имеет свое название – «car-to-X communication ». Сегодня несколько компаний, в числе которых Audi, приступили к ее созданию. Суть разработки в том, чтобы сделать возможным «общение» вашего автомобиля не только с другими машинами, но и с инфраструктурой, например с веб-камерами на перекрестках, светофорами или дорожными знаками.

Зная о состоянии светофоров, загруженности улиц и дорожных условиях , машина может экономить энергию, предостерегая водителя от ненужных разгонов/торможений. Машина даже сможет самостоятельно резервировать место на парковке . Если автомобиль попал в экстренную ситуацию, он сможет сообщить об этом окружающим авто, чтобы другие водители могли вовремя сбавить скорость и избежать столкновения.

Audi показала часть этих инноваций на примере E-tron

https://www.youtube.com/v/iRDRbLVTFrQ


Улучшение системы безопасности


Говоря о технологиях, способных улучшить ситуацию с безопасностью, одну из основных задач разработчики видят в том, чтобы «удержать » нас на одной полосе или вообще на дороге в особо тяжелых случаях .

Улучшенная система запуска двигателя

На самом деле такого рода системы – это дело не завтрашнего дня, а уже сегодняшнего. Но о них нельзя не сказать, так как они являются одним из элементов той самой эффективности использования ресурсов. Речь идет о системе автоматического запуска или остановки двигателя .

Такие решения уже сейчас можно наблюдать практически на всех : когда он останавливается – двигатели выключаются; чтобы тронуться с места, не надо снова заводить мотор, а достаточно лишь нажать на педаль газа. А если говорить о будущем данной технологии, то она со временем может быть тесно интегрирована с системой car-to-X, дабы еще больше снизить расход топлива . Например, получив информацию о том, что на перекрестке светофор загорелся красным, автомобиль может выключить основной двигатель и продолжить движение только на электродвигателе, тем самым сэкономив немного энергии.


Автопилот или четкий круиз-контроль

Системы помощи при торможении посредством установленных на автомобиль эхолокаторов/лазеров или радаров уже стали стандартной опцией, устанавливаемой в дорогие автомобили. Но, как и другие разработки, вначале появившиеся в автомобилях верхнего ценового диапазона, эта так же скоро перекочует и в более дешевый сегмент .

Этот вид технологии, который способен предотвратить столкновение с впереди идущим транспортом , может помочь в безопасности движения и пригодится в основном начинающим водителям, так что его появление будет весьма кстати. Если производители и дальше будут продолжать совершенствование данной технологии, а это именно так и будет, вскоре мы сможем увидеть нечто похожее на автопилот.

Наша цель на 2020 год, что бы никто не пострадал от автомобилей Volvo ”, заявляет старший советник по безопасности Томас Бергер, говоря про новую систему обнаружения пешеходо в .

Мониторинг движения или "Мертвые зоны"

Еще две, несомненно, нужные технологии, которые могут помочь в улучшении ситуации с безопасностью, – это мониторинг так называемых «мертвых зон » и система предупреждения пересечения дорожной разметки . Например, новая система, которую планируется устанавливать в автомобили начиная с 2011 года, комбинирует эти две технологии. Система будет не только способна предупреждать водителя, если он без поворотника начнет перестроение на соседнюю полосу, но и воспрепятствует перестроению , если ряд будет занят другим транспортным средством. Естественно, Infiniti не будет единственным автомобилем, где мы сможем наблюдать подобные технологии.

Так называемая «слепая зона ». Такие компании, как BMW, Ford, GM, Mazda и Volvo, предлагают специальные системы, которые используют встроенные в зеркала камеры или датчики , контролирующие мертвые зоны. Небольшие лампочки аварийной сигнализации, устанавливаемые рядом с зеркалами заднего вида, предупреждают водителя о нахождении автомобиля в мертвой зоне, а если никакой реакции от водителя не последовало и он начал перестроение, система принимается более активно предупреждать о помехе, издавая звуки , или, в зависимости от марки, начинается вибрация рулевого колеса . Минусом является тем, что подобные системы работают только на небольших скоростях.

Система Cross Traffic Alert: это радар, который работает на базе системы мониторинга «мертвых зон». Система способна определять движение автомобилей в перекрестном направлении во время езды задним ходом . Cross Traffic Alert умеет определять приближение авто на расстоянии 19,8 метра как с левого, так и правого бока, где установлены специальные радары. В данный момент эта функция доступна на автомобилях Ford и Lincoln.

Пересечение дорожной разметки

Несколько компаний, в числе которых Audi, BMW, Ford, Infiniti, Lexus, Mercedes-Benz, Nissan и Volvo, предлагают похожие друг на друга решения. Для работы системы используются маленькие камеры, считывающие дорожную разметку , и если вы ее пересекаете, не включив при этом поворотник, система подает предупредительный знак. В зависимости от системы это может быть звуковой или световой сигналы, вибрация руля либо небольшое натяжение ремня . Например, в Infiniti применяется автоматическое торможение с одной из сторон автомобиля, чтобы предотвратить выезд автомобиля из полосы движения.

Парковка

Уже недалек тот день, когда автомобили смогут ездить без помощи человека. Задал нужный пункт назначения, и сидишь себе попиваешь кофе и просматриваешь утреннюю прессу. Но пока этот день еще не наступил, а многие автопроизводители начинают нас к этому потихоньку готовить. Например, многие компании уже сегодня устанавливают автоматизированные системы помощи при парковке . Действуют такие системы следующим образом: автомобиль при помощи радаров определяет, достаточно ли места, чтобы припарковаться. Далее помогает водителю выбрать правильный угол поворота руля и практически сам ставит автомобиль на парковочное место. Конечно, без помощи человека пока что не обходится, но уже очень скоро появятся такие системы, в которых участие человека будет совсем необязательно. Можно будет выйти из автомобиля и понаблюдать весь процесс со стороны.

Отслеживание состояния водителя: утомленный водитель может быть столь же опасен, как и водитель, севший за руль в нетрезвом состоянии (а пить та нужно в норму закона ).


Интегрированные в автомобиль системы слежения, которые распознают признаки усталости в движениях и реакциях водителя и предупреждают о необходимости передохнуть, доступны у нескольких автопроизводителей. Это Lexus, Mercedes-Benz, Saab и Volvo. Например, в Mercedes такая система называется Attention Assist : она сначала изучает манеру езды, в частности вращение обода рулевого колеса, включение указателей поворота и нажатия на педали , а также следит за некоторыми управляющими действиями водителя и такими внешними факторами, как боковой ветер и неровности дорожного полотна . Если Attention Assist распознает утомление водителя, она информирует его о необходимости сделать остановку, чтобы немного передохнуть. Делает Attention Assist это с помощью звукового сигнала и предупреждающего сообщения на дисплее комбинации приборов.

В автомобилях Volvo тоже присутствует похожая система, но работает она несколько по-другому . Система не контролирует поведение водителя, а оценивает перемещение автомобиля на дороге. Если что-то происходит не так, как должно, система оповещает водителя, прежде чем ситуация станет критической.

Камеры ночного видения

Благодаря системам ночного видения можно сократить случаи дорожно-транспортных происшествий в ночное время суток . В настоящее время предлагается такими компаниями, как Mercedes-Benz, BMW и Audi в новой модели A8 . Такие системы способны помочь водителю разглядеть в темное время суток пешеходов, животных или лучше видеть дорожные знаки. В BMW для этого используется инфракрасная камера , которая передает изображение на монитор в черно-белом формате. Камера различает объекты на удалении до 300 метров . Инфракрасная система Mercedes-Benz имеет более короткий диапазон , но способна выдавать более четкое изображение , однако ее минусом является плохая работа при низких температурах .

А инженеры компании Toyota последнее время трудятся над улучшением систем ночного видения, которые могут помочь водителям увереннее ориентироваться в ночное время суток. На днях они представили прототип камеры, работа которой основана на алгоритмах и принципах построения изображений, открытых в ходе изучения функционирования глаз ночных жуков, пчел и моли, которые могут видеть в более широком диапазоне цветов, а также приспособлены к более полному улавливанию света, которого не так уж много в ночном мраке. Новый цифровой алгоритм обработки изображения может захватывать качественные полноцветные изображения в условиях недостаточной освещенности из перемещающегося на высоких скоростях автомобиля . Плюс к этому камера способна в автоматическом режиме адаптироваться к изменениям уровня освещенности.

Демонстрация работы тепловизора - камеры ночного видения для автомобиля

https://www.youtube.com/v/ghzyW0HaXMs


Ремни безопасности

В прошлом году Ford представил первые в мире ремни безопасности с надувными подушками . По словам разработчиков, данная система позволит значительно увеличить защиту пассажиров задних сидений, и в первую очередь маленьких детей, которые чаще взрослых подвержены травматизму в ДТП. Встроенная в ремень подушка безопасности надувается за 40 миллисекунд . Планируется, что подобными ремнями Ford будет оснащать модели Explorer 2011 модельного года, но только для задних пассажиров. В будущем подобные системы получат распространение и у других автопроизводителей.


https://www.youtube.com/v/MN5htEaRk4A

Гибриды а электрики

В последнее время практически все автопроизводители, и большие и маленькие, пытаются добиться большей эффективности , или коэффициента полезного действия, от силовых агрегатов, при этом делая ставку на новые виды топлива и двигатели, пытаясь снизить расход и увеличить средний показатель пробега на одном заряде/заправке. Уже сегодня мы можем наблюдать большое количество серийно выпускаемых , и практически каждый автопроизводитель имеет в своем портфолио гибридный автомобиль. В ближайшее десятилетие их станет только больше.

Беспроводная зарядка аккумуляторов
В связи с предстоящим распространением автомобилей на аккумуляторных батареях остро встанет вопрос об их беспроблемной, а главное, быстрой перезарядке . Конечно, можно раскрутить удлинитель со штепселем из автомобиля и подсоединить его к обычной розетке. Но это не каждому доступно.

Сложно себе представить городского жителя, тянущего штепсель на шестой этаж. Или совсем уж футуристичным выглядит вариант с бесплатными розетками на улицах. Другой вариант, который кажется не столь фантастичным, – это индукционные зарядные устройства . К тому же технология уже проходит обкатку на более мелких устройствах, таких как плееры и мобильные телефоны. Такого рода зарядные устройства можно было бы встраивать в места для паркинга в больших магазинах, например.

Активная аэродинамика
Несмотря на то что все автопроизводители давно уже используют аэродинамические трубы , и в этом аспекте есть куда стремиться.

Например, компания BMW, в своем концепт каре BMW Vision Efficient Dynamics уже успешно использует системы управления воздухозаборниками . В зависимости от условий движения и температуры наружного воздуха заслонки перед радиатором по сигналу системы открываются или закрываются. Если они закрыты, это улучшает аэродинамику и сокращает время прогрева двигателя, уменьшая тем самым расход топлива. Естественно, BMW не единственная компания, использующая данную технологию.

KERS - рекуперативное торможение
Это вид электрического торможения, при котором электроэнергия, вырабатываемая тяговыми электродвигателями, работающими в генераторном режиме, возвращается в электрическую сеть.

Только в сезоне 2009 года в « » на некоторых болидах используется система рекуперации кинетической энергии (KERS). Рассчитывалось, что это подстегнёт разработки в области гибридных автомобилей и дальнейшие совершенствования данной системы.

Как известно, Ferrari представила гибридное купе на базе 599-ой модели , с системой KERS.

Автомобили будущего

Toyota Biomobile Mecha
2057 год. Ограниченное пространство городских улиц и вертикальная архитектура требуют от автопрома создания новейших автомобилей, которые смогут выжить в городских джунглях и устраивать гонки по вертикали. Инновационные решения автопроизводители находят в биомимикрии, где четыре нанолазерных колеса легко приспосабливаются к любой трассе.
удерживаются вместе магнитными полями), которое может восстанавливать свою форму по одному клику на брелоке сигнализации или внутри автомобиля. Водитель сможет выбирать тип корпуса авто из нескольких возможных «предустановленных» скинов. Выбор цвета машины просто неограничен - мечта для девушек, подбирающих себе автомобиль под цвет любимой губной помады.

Магнитные поля помогут концепту мгновенно регенерировать после удара. SilverFlow восстанавливает свою первоначальную форму простой «перезагрузкой» . Появление золотых областей будет информировать о завершении «трансформации» и готовности автомобиля к поездке.

Передача механической энергии к колёсам, по мыслям мерседесовцев, передаётся специальной жидкостью, молекулы которой приводятся в движение электростатическими наномоторами. Четыре поворотных колеса позволят автомобилю разворачиваться на месте и парковаться боком. Руля и привычных педалей в SilverFlow вы не найдёте, ускорение и направление движения будут задаваться двумя рычагами, установленными по бокам водительского места.

Honda Zeppelin
Данная Хонда , была создан неким студентом, который учился на факультете дизайна автомобилей в университете Hongik, что находится в Корее.
Sequence GT

Главные новости недели

Запустить софт для моделирования и вывести полноразмерную модель для редактирования в пространстве. Включить коммуникатор и побеседовать не с плоским изображением собеседника на видеозвонке, а с его объемной проекцией, через которую просвечивает любимый ковер. Отодвинуть штору и увидеть на оконном стекле прогноз погоды, ситуацию с пробками, и вообще - как оно там. Завести двигатель автомобиля и получать на участке лобового стекла дополнительные оповещения о дорожной разметке, возможных опасностях и иных важных сведениях.

Если раньше все это было уделом научных фантастов, то сейчас подобное перешло из разряда “Фантастика” в разряд “Ближайшее будущее”. О том, как современные ученые приближают век голографии, с чего все начиналось и какие трудности развития голографические технологии испытывают на данный момент, мы постараемся рассказать в этом посте.

Как создаются голографические изображения

Человеческий глаз видит физические объекты, так как от них отражается свет. Построение голографического изображения основано именно на этом принципе – создается пучок отраженного света, полностью идентичный тому, который отражался бы от физического объекта. Человек, смотря на этот пучок, видит тот же самый объект (даже если смотрит на него под разными углами).

Голограммы же более высокого разрешения - это статические рисунки, “холст” которых - фотополимер, а “кисть” - лазерный луч, который разово меняет структуру фотополимерных материалов. В итоге обработанный таким образом фотополимер создает голографическое изображение (на плоскость голограммы падает свет, фотополимер создает его тонкую интерференционную картину).

К слову, про саму интерференцию. Она возникает в случае, если в определенном пространстве складывается ряд электромагнитных волн, у которых совпадают частоты, причем с довольно высокой степенью. Уже в процессе записи голограммы в конкретной области складывают две волны – первая, опорная, исходит непосредственно от источника, вторая, объектная – отражается от объекта. Фотопластину с чувствительным материалом размещают в этой же области, и на ней возникает картина полос потемнения, соответствующих распределению электромагнитной энергии (интерференционная картина). Затем пластину освещают волной, близкой по характеристикам к опорной, и пластина преобразует эту волну в близкую к объектной.

В итоге получается, что наблюдатель видит примерно такой же свет, который отражался бы от изначального объекта записи.

Краткая историческая справка

Шел 1947-й год. Индия получила независимость от Британии, Аргентина предоставила избирательные права женщинам, Михаил Тимофеевич Калашников создал свой знаменитый автомат, Джон Бардин и Уолтер Браттейномиз проводят эксперимент, позволивший создать первый в мире действующий биполярный транзистор, начинается производство фотоаппаратов Polaroid.

А Деннис Габор получает первую в мире голограмму.

Вообще, Деннис пытался повысить разрешающую способность электронных микроскопов той эпохи, но в ходе направленного на это эксперимента получил голограмму.

Увы, Габор, как и многие умы, немного опередил свое время, и у него просто не было нужных технологий, чтобы получать голограммы хорошего качества (без когерентного источника света этого сделать невозможно, а первый лазер на кристалле искусственного рубина Теодор Мейман продемонстрирует лишь 13 лет спустя).

А вот после 1960-го (красный рубиновый лазер с длиной волны 694 нм, импульсный, и гелий-неоновый, 633 нм, непрерывный) дело пошло куда бодрее.

1962 . Эммет Лейт и Юрис Упатниекс, Мичиганский Технологический Институт. Создание классической схемы записи голограмм. Записывались пропускающие голограммы – в процессе восстановления голограммы свет пропускали через фотопластину, но некоторая часть света отражается от пластины и тоже создает изображение, которое видно с противоположной стороны.

1967 . Первый голографический портрет записывают при помощи рубинового лазера.

1968 . Совершенствуются и сами фотоматериалы, благодаря чему Юрий Николаевич Денисюк разрабатывает собственную схему записи и получает высококачественные голограммы (восстанавливали изображение путем отражения белого света). Все проходит вполне неплохо, настолько, что схема записи получает название “Схема Денисюка”, а голограммы - “Голограммы Денисюка”.

1977 . Мультиплексная голограмма Ллойда Кросса, состоящая из нескольких десятков ракурсов, каждый из которых можно увидеть только под одним углом.

Плюсы - размеры объекта, которые требуется записать, не ограничиваются длиной волны лазера или размером фотопластины. Можно создать голограмму предмета, которого не существует (то есть просто нарисовав придуманный предмет в сразу нескольких ракурсах).

Минусы - отсутствие вертикального параллакса, рассмотреть такую голограмму можно только по горизонтальной оси, но не сверху или снизу.

1986 . Абрахам Секе осознает, что нет предела совершенству, и предлагает создать источник когерентного излучения в приповерхностной области с помощью рентгеновского излучения. Пространственное разрешение в голографии всегда зависит от размеров источника излучения и его удаленности от предмета – это дало возможность восстановить в реальном пространстве атомы, которые окружали эмиттер.

Сейчас

Сегодня некоторые прототипы голографических видеодисплеев работают примерно так же, как и современные ЖК-мониторы: особым образом рассеивают свет, формируя псевдо-3D, а не создают интерференционную картину. С чем связан и главный минус такого подхода - нормально оценить такую картинку сможет только один человек, сидящих под правильным углом к монитору. Все остальные зрители будут не так впечатлены.

Конечно же, любители научной фантастики и новых технологий спят и видят, как голографические дисплеи станут такой же привычной вещью, как wifi дома или фотокамера в смартфоне, сравнимая с не самой плохой мыльницей. И хотя идеальная голограмма в понимании большинства - это на самом деле не сегодня и не завтра, разработки на эту тему уже активно ведутся.

Институт науки и передовых исследований, Корея. Рабочий прототип нового 3D-голографического дисплея, ТТХ которого примерно в пару тысяч раз лучше , чем у существующих аналогов.

Слабое звено таких дисплеев - матрица. Пока матрицы состоят из двухмерных пикселей. Корейцы же использовали обычный (но хороший) дисплей вкупе со специальным модулятором для фронта оптического импульса. Результатом стала высококачественная голограмма, правда, небольшая - 1 кубический сантиметр.

Было время, когда считалось, что рассеивание света - это серьезное препятствие для нормального распознавания проецируемых объектов. Но как показывает наша практика, современные 3D-дисплеи можно существенно улучшить, научившись контролировать это рассеивание. Правильное рассеивание позволило увеличить и угол обзора, и общую разрешающую способность,
- отмечает профессор Йонкен Парк .

Университет Гриффита, Технологический университет Суинберна, Австралия. Голографический дисплей на основе графена.

Ученые вооружились методом Габора, упоминавшимся в самом начале этого поста, и сделали 3D-голографический дисплей высокого разрешения на основе цифрового голографического экрана, состоящего из мелких точек, отражающих свет.

Плюсы – угол обзор в 52 градуса. Для нормального восприятия картинки не нужны никакие дополнительные приблуды в виде 3D-очков и прочего.

К слову, о 52 градусах. Угол обзора тем больше, чем меньше будет использоваться пикселей. Оксид графена обрабатывают путем фоторедукции, что создает пиксель, которому под силу изгибать цвет для голокартинки.

Разработчики полагают, что подобный подход в свое время сможет положить начало революции в разработке дисплеев, особенно - на мобильных устройствах.

Бристольский университет, Великобритания. Ультразвуковая голография.

Объект создается в воздухе с помощью множества ультразвуковых излучателей, направленных на облако водяного пара, которое также создается системой. Реализация, конечно, сложнее, чем в случае с привычными экрана, но все же.

  • туман создается не просто каплями воды, а каплями специального вещества.
  • это вещество освещается специальной лампой.
  • лампа модулирует специальный свет.

В итоге получается проекция объекта, который можно не только рассмотреть со всех сторон, но и потрогать.

Частота колебаний такой интерференционной картины - от 0.4 до 500 Гц.

Одно из главных направлений деятельности, в котором разработчики предполагают полезное использование технологии - медицина. Врач сможет на основе данных медкарты и смоделированного органа “почувствовать” его. Также можно будет создавать объемные проекции каких-либо товаров на презентациях. Положительный эффект предрекают и при замене подобной технологией сенсорных дисплеев в местах массового пользования (электронные меню, терминалы, банкоматы). Как сложно и дорого будет это внедрить - само собой, уже второй вопрос.

А уж до чего могут дойти развлекательные сервисы определенной направленности - страшно (но интересно) подумать.

Ванкувер, Канада. Интерактивный голографический дисплей.

Что нужно:

  • мобильное устройство
  • HDMI или wifi
  • пожертвовать 550$ на Кикстартере вот

Стартап с российскими корнями WayRay привез на выставку в Лас-Вегас голографический навигатор с дополненной реальностью, который можно будет просто купить в свой автомобиль. Он устанавливается за рулем, прямо на приборную панель, и всю инфографику водитель видит через небольшой визор. Специальные обозначения и подсказки привязаны к реальным объектам и выглядят как рисунки на асфальте, таким образом водитель практически не отвлекается от дороги. А управлять навигатором можно голосом или жестами.

"Еще одна сложность, с которой мы столкнулись - это огромное разнообразие дизайна приборных панелей, геометрии лобовых стекол, угла наклона, геометрии приборных панелей и т.д. Для того, чтобы эта штука работала во всех машинах, нам пришлось просканировать больше 400 автомобилей, моделей, которые сейчас есть в продаже, и математически найти оптимальные размеры."

Смысл технологии в нанесении на прозрачную поверхность специальной пленки, которая заменяет систему линз. Таким образом удалось сделать голографическое изображение без громоздкой конструкции. Голограмма, в свою очередь, хороша тем, что воспринимается глазом не как рисунок на стекле, а как объемное изображение отнесенное далеко вперед. То есть на него не нужно перефокусироваться, если ты смотришь на дорогу.

Надо сказать, что первый раз мы общались с Пономарёвым ровного год назад, там же, на CЕS. И WayRay тогда наделала много шума. Выставлялась компания в павильоне Harman, идею демонстрировала на автомобиле от Rinspeed. И уже тогда руководителей крупнейший автоконцернов вокруг той машины было удивительно много. Дело в том, что представленное в этот раз отдельное устройство с очень небольшим визором. А вот если закладывать технологию WayRay на стадии проектирования автомобиля, то в голографический дисплей можно превратить всё лобовое стекло. И таких проектов, говорят, сделали за минувший год уже довольно много.

Виталий Пономарев, основатель и глава WayRay:

"Каждый проект - это какая-то модель автомобиля, которая выйдет в 19-ом или скорее всего в 20-ом году. Потому что им нужно зафиксировать дизайн Dashboard, вот этой приборной панели, всего автомобиля, и тогда они уже начинают делать молдинги для отливки пластика, чтобы потом все это превратилось в конечный автомобиль. То есть, мы сейчас работаем над автомобилями, которые будут выходить с 19-го по 29 год. Все новые технологии начинаются с люкса и потихоньку спускаются в масс-маркет. Но как ни странно в нашем случае, наибольшие объемы мы видим в среднем сегменте. Это SUV - паркетники, популярность который сейчас растет и растет."

А пока автомобили с голографическими лобовыми стёклами только готовятся к производству, в WayRay уже смотрят в сторону беспилотных автомобилей и роботакси. Там, говорят, понадобится уже не навигатор, а система доставки на стекла машины развлекательного и рекламного контента. Компания уже анонсировала True AR SDK - набор инструментов для сторонних разработчиков, которые могут создавать приложения и игры под экосистему WayRay. Ведь если у человека в машине забрать руль, ему нужно будет чем-то занять руки и глаза.

В любой современной машине перед водителем светится целая куча разнообразных приборов. Как минимум это спидометр и датчик уровня топлива. Но в большинстве случаев набор куда полнее: часы, информационный дисплей, тахометр, датчик температуры и прочие индикаторы. А можно найти машины с целым «иконостасом» из десятка аналоговых приборов. Но так было не всегда...

Самый важный прибор

Автомобили начала XX века по конструкции были очень далеки от нынешних, у многих не было привычных нам систем освещения, датчиков, салона и даже лобового стекла. А такие элементы, как трансмиссия и системы охлаждения, зажигания и тормозов выглядели странно и непривычно. Попади современный водитель за руль такой машины, он вряд ли смог бы даже тронуться с места: мастерство шофера было весьма сложным и требовало хорошего знания конкретной конструкции вплоть до 60-х годов прошлого века. А помочь ему в этом должны были точный слух да верный глаз.


Вплоть до начала 1920-х годов приборов в автомобилях, считайте, не было — даже привычный нам спидометр отсутствовал как опция: не существовало тех скоростей, которые можно было бы измерять, да и к лошадям без этой «опции» все привыкли. Указателем уровня топлива являлось, как правило, обычное мерное стекло — банальная трубка, работающая по закону сообщающихся сосудов. Уровень охлаждающей жидкости особенно не проверяли: даже если охлаждение было водяное, воду все равно заливали прямо перед поездкой из мерной посуды. Обязательный датчик уровня воды был только у локомобилей, да вольтметры и амперметры — у электромобилей.

Одним из первых приборов, который начал появляться в автомобилях, стал именно амперметр. После массового появления батарейного зажигания, электростартеров и электрического освещения остро встал вопрос о контроле заряда аккумулятора, и амперметр надолго занял свое место на приборной панели. Уровень топлива все еще измерялся палочкой прямо в баке, а вот скорость перестали прикидывать на глазок — в машинах начали появляться спидометры, да и скорости к 30-м годам сильно подросли.



Вышедшая в 1923 году Ford Model T довольствовалась только амперметром и трубкой-указателем уровня топлива. С другой стороны, очень дорогие машины предлагали куда более серьезный инструментарий. Компрессорный Mercedes 6/25/40 hp 1921 года имел уже четыре прибора, в том числе спидометр, манометр давления масла и наддува, а гоночный 240-сильный Bentley c наддувом Blower 1930 года — все девять, включая контроль температуры мотора и масла, а также два индикатора качества и наличия бензина.

Кстати, приборная панель этих машин уже имела освещение для комфортного движения ночью, а показания почти всех приборов были важны. Подсветку организовали в виде «грибков» с лампами внутри, которые освещали зону расположения приборов в салоне. Чем дороже и сложнее была машина, тем больше информации давала приборная панель, да и дизайнерская мысль не стояла на месте. На шикарном Cord 812SC 1936 года мы видим восемь приборов, несомненно, являющихся одним из элементов оформления салона. Тут же можно заметить передовой вариант подсветки — она индивидуальная, с использованием кольцевого световода вокруг прибора. Такая подсветка станет массовой только в 50-е годы и задержится в авто надолго.

Натуральные материалы и натуральные шкалы

Бурный прогресс 30-х годов, массовое появление систем водяного охлаждения с принудительной циркуляцией, закрытых кузовов и перенос бензобака подальше от мотора, а также внедрение топливных насосов повлияли и на дизайн приборных панелей. Так, спидометр стал непременным атрибутом приборной панели наряду с амперметром. Датчик температуры и датчик уровня топлива появляются в машинах все чаще, но по большей части это все еще не стрелочные индикаторы.

На Ford V8 указатель уровня топлива — это просто трубочка, показывающая давление в баке: по аналогии с обычным манометром тут используется более тяжелая жидкость, нежели бензин, для уменьшения амплитуды. На ряде вариантов устанавливается датчик температуры, основанный на том же принципе, только замеряет он плотность (и температуру) охлаждающей жидкости.

Фоновая подсветка шкал гидроуказателей вполне естественное решение. Подсвечивались и стрелочные индикаторы — обратите внимание на интересную реализацию шкалы: она утоплена внутрь относительно ее верхней части. Ночью внутри прибора работала лампа и шкала светилась.



Датчики Ford A deluxe- Ford V8

Сравнительно небольшие объемы выпуска и низкий уровень автоматизации производства позволяли вносить коррективы в приборные панели по мере появления более продвинутых приборов и изменения моды. К тому же поставщиков приборных панелей и самих приборов на конвейер могло быть несколько, в разных комплектациях использовались различные варианты.

К 1938-1939 годам приборные панели на машинах почти лишились гидравлических указателей температуры и уровня топлива, но такие приборы, как манометры, остались. В легковых машинах часто применяется указатель давления масла, а для грузовиков с пневматическими тормозами — еще и указатель давления в магистрали.

Послевоенные тенденции. Лампы контроля и химия в жизнь

Приборные панели послевоенных авто отличаются в первую очередь дизайном. Тут и ленточные спидометры, и попытки эмуляции цифровых индикаторов. Играть в «дизайн» стало модным, вспомните хотя бы нашу «Волгу» ГАЗ-21 и ее спидометр с «естественной» подсветкой. Для мощных машин стандартом де-факто становится тахометр, а часы оказались просто удобным аксессуаром, который старались разместить в автомобиле. До появления цифровых индикаторов это один из важных элементов оформления интерьера.

Одна из примет времени — внедрение ламп-индикаторов и формирование «стандартного» набора приборов и контрольных ламп в едином блоке. Теперь в числе прочего приборная панель старается информировать водителя о включенных световых приборах, отклонениях в параметрах работы двигателя и трансмиссии от нормы. Повышение надежности силовых агрегатов, упрощение системы смазки, систем питания и охлаждения находят отражение в тенденции к минималистичности.

Количество стрелочных индикаторов стараются ограничивать. Уже к концу 50-х годов на легковых автомобилях приборная панель становится компактной и перемещается ближе к водителю. На довоенных машинах это было редкое и не очень популярное решение, но с уменьшением числа приборов и переходом на чисто электрическое подключение оно находит все больше поклонников. Теперь «приборная панель» — это именно отдельная установочная деталь, а не часть передней панели, которая, в свою очередь, старается быть не только стильной, но и травмобезопасной.

Достижения химической промышленности в виде полупрозрачных материалов сказываются и на внешнем виде приборной панели. Форма диктуется соображениями дизайна, а вариантов исполнения формы и подсветки становится больше. Сами индикаторы пока исключительно аналоговые — катушка и стрелка, индукционный спидометр или просто манометр.

Космос на земле и торжество лаконичности

В конце 70-х годов дизайнеры получили шанс на воплощение своих самых смелых фантазий в части реализации нового интерфейса пользователя автомобиля. Первенцем стал второй выпуск люксового Aston Martin Lagonda 1976 года, в приборной панели которого появились настоящие цифровые индикаторы, а в третьей серии 1986-1987 годов даже использовалась настоящая электронно-лучевая трубка, как у телевизоров тех лет.



Впрочем, компания Citroen сильно не отставала: на модель CX с 1974 по 1985 год можно было в качестве опции установить приборную панель Spaceship. Правда, тут цифровые индикаторы были уже не совсем настоящие, зато подход к эргономике — крайне интересный: на козырек приборной панели вынесли всевозможные переключатели. Начало 80-х позволило внедрить «лагондовские» технологии на куда более массовых машинах, например, цифровая приборная панель полагалась топовым версиям недорогого Renault 11, Opel Kadett E, или Opel Vectra 2000, Chevrolet Cavalier Z24, Pontiac TransAm, или Subaru XT Turbo, это уже не говоря о более дорогих моделях Cadillac или концепт-карах.

Впрочем, несмотря на то что надежность подобных приборных панелей уже не вызывала серьезных опасений, как это было в случае с Aston Martin, особенного распространения они не получили. Напротив, наиболее популярными стали максимально лаконичные приборные панели с минимумом указателей. Спидометр, указатели температуры, уровня топлива, часто тахометр — и все. Амперметр пропал с приборных панелей еще в 70-е, с появлением простых контрольных ламп заряда, а эконометры, датчики давления или температуры масла применялись уже очень ограниченно.

Стрелочные часы часто использовались как замена тахометра в недорогих комплектациях. Зато были предприняты серьезные усилия для улучшения читаемости приборов в ночное и дневное время. Изменился подход к эргономике рабочего места водителя. В принципе, это тоже «космические» технологии. Теперь не только расположение органов управления автомобилем учитывалось при проектировании, но и расположение и форма индикаторов.

Появились лучше читаемые шкалы приборов, фоновая подсветка шкал и стрелок, регулирование яркости подсветки в автоматическом и ручном режимах, и наконец, были внедрены оптитронные приборные панели, у которых контрастность изображения задавалась уже не внешним освещением, а только подсветкой.

Еще один качественный скачок — переход к цифровому управлению аналоговыми индикаторами. Уже в середине 90-х годов спидометры стали цифровыми, а все стрелки приводились в управление шаговыми моторами. Разумеется, контролируется работа такой приборной панели встроенным компьютером. Соединение панели со всеми остальными элементами машины — только электрическое. И стрелки перестали «плясать» на неровностях, показания уровня топлива стали точнее, а непременным атрибутом приборной панели явился дополнительный информационный дисплей.

Приборные панели этого поколения хорошо знакомы всем современным автомобилистам: большая часть машин оснащается подобными решениями до сих пор.




Будущее, которое уже было

Мода на «космос» не ушла совсем, поддавшись выверенной эргономике. Попытки внедрить очередной набор цифровых индикаторов не прекращался. Целый ряд машин с промежутке с 1982 года до начала 2000-х оснащался цифровыми панелями на основе VFD или LED-дисплеев. Дополнительные экраны MID и бортовых мультимедийных систем становились больше, лучше и интегрировались в бортовые системы автомобиля. Эволюция сделала то, что не смогла революция: постепенный рост качества и размеров информационных дисплеев приборной панели понемногу вытеснил аналоговые индикаторы.

Даже на самых дешевых машинах количество стрелочных приборов постепенно сокращается, сделать недорогой монохромный дисплей куда проще, чем качественный аналоговый индикатор. Начиная с начала 2000-х годов размеры и качество вспомогательных дисплеев приборной панели непрерывно росли, и на них возлагалось все больше функций. Из простых монохромных символьных они стали монохромными графическими, а потом цветными. Улучшалось их разрешение, а также они стали интегрироваться в мультимедийную среду автомобиля.

Отказ от аналоговых приборов оказался лишь вопросом времени: сначала Jaguar, а затем и остальные бренды перешли на полностью цифровые приборные панели, стрелки на которых целиком рисованные, а сама панель может работать монитором бортовой мультимедийной системы. Сейчас полностью цифровая приборная панель уже не признак премиальной машины с передовыми технологиями — топовые комплектации обычных массовых хэтчбеков и кроссоверов позволяют приобщиться к новинке простым людям.



Прямо перед глазами

Споры о том, где эргономичнее располагать приборы, ведутся до сих пор, и постоянно находятся смельчаки, которые пытаются изменить традиционный взгляд водителя на приборы. Традиционный — это через обод руля, прямо перед собой.

Расположение приборов по центру машины, повыше и подальше от водителя — один из немногих альтернативных вариантов, а вот в компании Peugeot уверены, что лучше смотреть на приборы поверх руля, когда приборная панель расположена просто очень высоко. Никто не сомневается, что лучше всего проецировать важные показания прямо на лобовое стекло перед водителем. Это позволит не отвлекаться от дороги, а заодно избежать изменения аккомодации глаз при считывании показаний приборов.

HUD — Head Up Display технология — пришла из авиации, где применяется уже добрых полвека, технология полупрозрачных экранов и зеркал появилась еще в 30-е годы, а в 40-е данные радара уже проецировались прямо на лобовое стекло самолета. В машинах HUD появился намного позже, в 1988 году его как опцию предложили для Oldsmobile Cutlass Supreme и Pontiac Grand Prix, а на Nissan 240SX 1989 года он был стандартным оснащением топовой версии. Сейчас технология доступна на множестве машин в качестве опции, а HUD-гаджет можно поставить вообще в любую машину с OBD2-портом.

Обычно список показаний ограничивается скоростью, аварийными индикаторами и подсказками навигационной системы. Но предпринимаются попытки интегрировать HUD-дисплеи в системы дополненной реальности, ведь они для этого подходят идеально. В сочетании с технологией распознавания дорожных знаков, людей и движущихся объектов это создает предпосылки для дальнейшего повышения безопасности дорожного движения и увеличения комфорта передвижения в сложных условиях видимости. А учитывая прогресс цифровых технологий и потенциальные возможности, в ближайшее время стоит ожидать появления технологии уже не на прототипах, а на серийных машинах. Тем более что первый опыт компании Pioneer Corporation в 2012 году доказал: AR-технологии уже могут работать, вопрос лишь в их полезности и степени интеграции с бортовыми системами автомобиля.

Понравилось? Лайкни нас на Facebook