Новый взгляд на работы Николы Тесла. Автомобиль Тесла. Вечный двигатель и свободная энергия — табу официальной науки

Предлагаем Вашему вниманию несколько статей посвященных новому взгляду на работы Николы Тесла. Начнем со статьи о самодвижущемся автомобиле Теслы, который так и остался великим секретом за семью печатями, благодара стараниям авто производителя, который как и производитель косметики и любой прочий промышленник, входящий в общий синдикат подконтрольный мировому правительству, сделали все, чтобы мы так и не узнали правды.

На запрос в интернете “автомобиль Тесла” поисковик выдает огромное количество ссылок. Однако при внимательном ознакомлении выясняется, что это, в основном, перепечатки нескольких статей из газет того времени.

Итак! Что нам известно. 1931 год. Автомобиль, в котором двигатель внутреннего сгорания заменен на электродвигатель. Электродвигатель мощностью 80 лошадиных сил (58 кВт) либо стандартный, асинхронный, либо доработанный Теслой. Аккумулятор остался штатный. Добавлена коробка с габаритами 60х30х15 сантиметров. 12 электронных ламп, провода, резисторы и конденсаторы. Также из коробки торчали 2 стержня длиной по 7,5 сантиметров. Вот, практически, все что мы имеем достоверного об этом удивительном автомобиле на сегодняшний день.

Теперь начнем рассуждать!

Для начала предлагаю исключить из рассмотрения стержни. Основание: если это антенны полуволновой вибратор, то они рассчитаны на частоты СВЧ, которых в те далекие годы еще не знали. Скорее всего Тесла установил эти стержни для отвода глаз - так легче объяснить обывателям, откуда берется энергия.

Далее рассмотрим таинственную коробку. Там были установлены лампы и купленные резисторы и конденсаторы. Лампы 30-х годов представляли из себя стеклянные баллоны диаметром порядка 50-60 мм и длиной до 100-150 мм. 12 ламп с панелями и разводкой питания занимали более половины пространства коробки. Учитывая, что лампы при работе изрядно грелись, думаю, что кроме них в коробке ничего больше не было. Следовательно источник питания был установлен Теслой где-то под капотом или в багажнике автомобиля. Явно не на виду у любопытствующей публики.

Еще один важный, с моей точки зрения, момент. На автомобиле осталась коробка перемены передач, тормоз и педаль газа. Скорость вращения асинхронного двигателя можно регулировать тремя способами. Изменением частоты переменного тока, переключением числа полюсов и изменением напряжение питания. Менять частоту питающего напряжения слишком сложно и этот способ следует отбросить, как маловероятный. Переключать число полюсов - можно, но это значительно усложняет конструкцию двигателя. Мы знаем, что двигатель был стандартный. Если он и был доработан Теслой, то эта доработка, скорее всего, касалась обмоток, а не конструкции статора и ротора. Таким образом у нас остается единственный способ регулировки числа оборотов двигателя - изменение напряжения питания. Этот способ наименее экономичный, но и наиболее простой. Тесла имел неограниченный запас мощности и мог себе позволить рассеивать ее на… Тут встает вопрос на чем он мог рассеивать излишек мощности? Можно поставить гасящие реостаты, но это решение не для Теслы. Какие габариты должны были бы иметь эти реостаты и какое количество тепла на них должно рассеиваться. Тесла хороший электронщик (как бы мы сегодня его назвали) и любитель внешних эффектов, поэтому он, скорее всего, выбрал другой способ регулировки напряжения. Вот тут мне приходит мысль, что лампы и коробка предназначены именно для регулировки выходного напряжения. Что и сколько надо регулировать? Двигатель (80 л.с. или 58 кВт) при напряжении питания 300 вольт потребляет около 200 ампер. При напряжении 500 вольт ток составляет 116 ампер. При напряжении 1000 вольт ток составляет 58 ампер. Скорее всего двигатель был перемотан на напряжение не ниже 500 вольт. Напряжение переменное. Надо регулировать как положительную, так и отрицательную полуволны. 12 ламп. По 6 ламп в каждом плече регулировки. Лампы в каждом плече включены параллельно. На каждую лампу приходится по 20 ампер (при 500 кольт) или 10 ампер (при 1000 вольт). Такие токи и напряжения вполне доступны для ламп того времени. Лампы управляются по сетке, и работают в режиме ключа. Управляющий сигнал на лампы синхронизирован с частотой основного источника питания (секрет Теслы) и модулируется педалью газа.

Теперь пара слов об аккумуляторе. Он нужен для запуска основной схемы питания, спрятанной Теслой внутри автомобиля. Во время работы аккумулятор может подпитываться по стандартной схеме от отдельного генератора на валу электродвигателя, либо от основной схемы. Это не принципиально и сильного интереса не представляет.

Вот так мне видится решение загадки автомобиля Тесла.

Виктор Васильевич Нелепец.

В Tesla Model 3 будут использоваться аккумуляторы последней модификации с «Гигафабрики Tesla»

Компания Tesla собирается устанавливать в своих новых электромобилях Tesla Model 3 аккумуляторы, которые производятся сейчас на «Гигафабрике» из Невады. Новые силовые агрегаты, как обещает компания, будут более мощными и эффективными. Преобразователь был разработан с нуля, предыдущие модели, которые работали в той же Tesla Model S, не используются. Новое здесь все, включая полупроводниковые элементы системы. Инженерам компании удалось снизить количество уникальных элементов инвертора примерно на 25%, что позволяет удешевить конструкцию.

Кроме того, Model 3 получила 435-сильный электромотор. Об этом сообщил технический директор Tesla. Это даже больше, чем у BMW M3, где установлен трехлитровый шестицилиндровый твин-турбо двигатель (максимум - 431 л.с.). Благодаря мощному мотору самая медленная модификация модели сможет разгоняться до 96 километров в час всего за 6 секунд. У старшей модели с продвинутым режимом Ludicrous Mode на разгон до этой скорости уйдет всего 4 секунды.



Электронные компоненты инвертора (полевые транзисторы с изолированным затвором)

Инженеры компании уже несколько месяцев работают над созданием нового инвертора Model 3 мощностью 320 КВт. В конструкции инвертора используются биполярные транзисторы TO-247 с изолированным затвором. Эти электронные компоненты использовались в конструкции инвертора для Tesla Model X и Tesla Model S. Производство инверторов уже стартовало, запущены производственные линии и для других компонентов, поскольку компания собирается поставить около 500000 электромобилей к 2018 году.

Без подзарядки новая модель сможет проезжать от 340 до 400 километров, что очень неплохо. Изначально на рынок будет поставляться версия с запасом хода в 340 километров, после чего появится модель с аккумулятором емкостью в 80 КВт·ч. С этим аккумулятором электромобиль сможет пройти и 480 километров. Кроме того, новинка получает автопилот. И хотя он и не превратит электромобиль в робомобиль, помощь автомобилисту будет оказываться довольно серьезная.

Сейчас компания уже проводит тестирование своего нового электромобиля. К примеру, недавно именно такую модель сфотографировали в одном из сервисных центров компании. По внешнему виду она ничем не отличается от демонстрационного образца.

Отгружать Model 3 покупателям начнут не ранее конца 2017 года. Предзаказов на электромобиль поступило в несколько раз больше планируемого - на данный момент более 375 тысяч. Неясно, способна ли Tesla Motors справиться с такой нагрузкой без срыва сроков. Вполне возможно, что будут срывы сроков. По Model X проблемы были еще в первом квартале - вместо 4500 электромобилей компания смогла поставить 2400. Тем не менее Илон Маск обещает постепенно нарастить производственные мощности, чтобы заказчики любых моделей электромобиля получали свои транспортные средства точно в срок.

Важным фактором роста акций TSLA на NASDAQ стало то, как работает электродвигатель.

Как работает электродвигатель?

Tesla Roadster использует трёхфазный асинхронный электродвигатель с переменным напряжением. В отличие от некоторых других моторов, использующих постоянные магниты, двигатель Roadster основан на магнитном поле, созданном целиком за счёт электричества.

У электромотора Tesla есть ротор и статор. Ротор - это стальная втулка, через которую пропущены медные пластины, позволяющие току перетекать с одной стороны ротора на другую. Электричество на ротор напрямую не подаётся. Ток возникает при прохождении проводника из медных пластин через магнитное поле, которое создаётся переменным током в статоре. Вращением втулки приводятся в движение колёса.

Статор - это тонкие стальные пластины, через которые проведена медная обмотка из проволоки. По ней в двигатель поступает электричество из модуля питания. Провода делятся на три вида по числу фаз электричества, которые можно представить себе в виде волн синусоидальных колебаний, гладкое сочетание которых обеспечивает бесперебойную подачу электроэнергии.

Переменный ток в медной обмотке статора создаёт вращающееся магнитное поле и вызывает поток частиц в роторе. Ток порождает второе магнитное поле в роторе, который следует за движущимся полем статора. Результатом этого процесса становится вращающий момент.

Когда водитель нажимает на педаль газа, модуль питания ставит поле статора позади поля ротора. Вследствие этого ротору приходится замедлиться для того, чтобы его поле вышло на уровень поля статора. Направление тока в статоре меняется, и начинается поток энергии через модуль питания обратно в батарею. Это называется регенерацией энергии.

Мотор выступает то генератором, то двигателем, в зависимости от действий водителя. При нажатии педали газа, модуль питания ощущает потребность во вращающем моменте. Если педаль нажата на 100%, доступный вращающий момент выбирается полностью, а если нет, тогда частично. Если не газовать, двигатель будет использоваться для восстановления энергии. Мотором он становится только тогда, когда модуль питания посылает нужное количество переменного тока на статор, что порождает вращающий момент.

Мотор Tesla приспособлен для работы на высокой скорости, но даже при этом требует теплового отвода. В этих целях сделаны охлаждающие пластины, воздух по которым гоняет вентилятор.

Тяговый электродвигатель очень мал, размером с арбуз, и максимально лёгок благодаря использованию алюминия. Модуль питания передаёт до 900 ампер тока на статор, обмотка которого сделана из значительно большего количества меди, чем в обычном моторе. Медные провода изолированы специальными полимерами, которые обеспечивают теплопередачу и устойчивость при вождении в экстремальных условиях.

В отличие от обычных индукционных моторов, использующих в качестве проводника алюминий, в электродвигателе Roadster эту роль играет медь. Работать с ней сложнее, но у неё меньше сопротивление, поэтому она лучше проводит ток.


Основные факторы роста акций TSLA на Nasdaq

Ценные бумаги TSLA на Nasdaq растут под влиянием также и других факторов, помимо мотора:

  1. Урегулирование вопросов безопасности автомобилей. Государственное управление безопасности дорожного движения США подтвердило безопасность электромобилей Tesla.
  2. Рост китайского рынка электромобилей. Формирование рынка сбыта через объём заказов становится всё прозрачнее. Компании удалось получить значительное количество заказов в Китае. Китай - крупнейший рынок роскошных машин, несмотря на сложностью с зарядкой элетродвигателей и с получением автомобильных номеров. Препятствие в виде отсутствия готовых вариантов зарядки автомобиля, вероятно, будет устранено за счёт самих китайцев, которые согласны добиваться установки зарядок в гаражах. Регулирование выпуска номерных знаков в Китае сократило их выдачу с 500 тысяч до 150 тысяч в год, из которых 20 тысяч зарезервировано для автомобилей, ездящих на альтернативных источниках энергии. Общее число выдаваемых номеров останется без изменения, но число номеров, зарезервированных для автомобилей на альтернативных видах топлива, увеличится до 30 тысяч в 2015 году и 60 тысяч в 2016 году. В КНР мало доступных марок роскошных авто, поэтому расширение квоты даёт конкурентное преимущество TSLA.
  3. Повышение финансовой устойчивости компании. От TSLA можно ждать повышения рентабельности выручки по продажам за вычетом себестоимости. Целевые темпы сборки 800 авто в неделю, вероятно, будут превышены, и это при том, что в 3-м квартале 2013-го компания собирала по 510 машин в неделю. Управленческие расходы и траты на НИОКР во втором полугодии 2014 года должны сократиться в процентах от выручки. Уменьшится и себестоимость, так как поставщик батарей Panasonic сначала умеренно расширит предложение в середине 2014 года, а затем резко увеличит его после ввода переоборудованного завода, который позволит собрать около 1,8 млрд батарей с 2014 по 2017 годы.
На основе прогнозной прибыли на акцию 10 долларов в 2017 году, по 30 прибылям на акцию, дисконтированным под 10% в год, можно ожидать роста бумаг TSLA до 205 долларов.
Некотрые исследователи привлекают к объяснению работы тесловского электромобиля магнитное поле Земли, которое Тесла мог использовать в своем генераторе. Вполне возможно, что используя схему высокочастотного высоковольтного переменного тока Тесла настраивал ее в резонанс с колебаниями "пульса" Земли (около 7.5 герц). При этом, очевидно, частота колебаний в его схеме должна была быть как можно более высокой, оставаясь при этом кратной 7.5 герцам (точнее - между 7.5 и 7.8 герц.).

РАЗГАДКА ЭЛЕКТРОМОБИЛЯ ТЕСЛЫ.

(с) 2003 Рус Эвенс , независимый исследователь.

В схеме электромобиля Теслы то, что принимают за приемник (черный ящик и два стержня за спиной у водителя) очевидно, является передатчиком. Используется два излучателя. Для получения трех нот. Тесла любил число 3. Кроме самого главного электродвигателя на автомобиле должен был присутствовать аккумулятор и стартер. При включении стартера вместе с Эл. Двигателем последний превращается в генератор, который питает два пульсирующих излучателя. ВЧ колебания излучателей поддерживают движение электродвигателя. Электродвигатель, таким образом, может одновременно являться и источником вращения колес автомобиля и генератором, питающим ВЧ излучатели.

Традиционное толкование рассматривает два стержня в качестве приемников каких-то космических лучей. Потом к ним цепляют какие то усилители (без питания!) чтобы они снабжали электричеством ЭЛ. Двигатель.

На самом деле ЭЛ. Двигатель не потребляет никакого тока.

В 20-е годы Маркони демонстрировал Муссолини и его жене как он на расстоянии несколько сотен метров может остановить движение транспортной колонны с помощью ВЧ ЭМ излучения.

Тот же самый эффект может быть использован с обратным знаком по отношению к электродвигателям.

Остановка вызывается диссонирующим излучением. Движение вызывается через резонирующее изучение. Очевидно, что эффект показанный Маркони работает с бензиновыми двигателями, поскольку у них есть электрогенератор, питающий свечи зажигания. Дизельные двигатели к подобному воздействию гораздо менее восприимчивы.

Движущей силой электродвигателя Теслы являлся не электрический ток, какого бы происхождения он не был, космического или какого-то еще, а резонансные высокочастотные колебания в среде, в эфире, вызывающие в электродвигателе движущую силу. Не на атомарном уровне, как у Дж. Кили а на уровне колебательного контура Эл. Двигателя.

Таким образом, можно изобразить следующую концептуальную схему работы Эл. Двигателя на электромобиле Теслы.

Аккумулятор запускает стартер. Эл. Двигатель приходит в движение и начинает работать как Эл. Генератор. Питание поступает на два независимых генератора высокочастотных ЭМ импульсов, настроенных по рассчитываемой формуле в резонанс с колебательным контуром Эл. Двигателя. Независимые колебания ЭМ генераторов настроены в гармоничном аккорде. Через несколько секунд после запуска стартер отключается, аккумулятор отключается. Высокочастотные ЭМ импульсы 2х генераторов развивают мощность в ЭЛ двигателе, который поет в резонансе с ВЧ генераторами, движет автомобиль, сам работает как электрогенератор, питающий ВЧ излучатели и никакого тока не потребляет.

Понимание работы электроавтомобиля Теслы.

Согласно закону причинно следственных связей, если второе вытекает из первого то и первое может вытекать из второго. В физике это принцип обратимости всех процессов.

Например, известны явления возникновения поляризации диэлектрика под действием механических напряжений. Это называется "прямой пьезоэлектрический эффект". В тоже время характерно и обратное - возникновения механических деформаций под действием электрического поля - "обратный пьезоэлектрический эффект". Прямой и обратный пьезоэлектрический эффекты наблюдаются в одних и тех же кристаллах - пьезоэлектриках.

Другой пример с термоэлементами. Если места контактов термоэлемента поддерживать при различных температурах, то в цепи возникает эдс (термоэдс), а при замыкании цепи - электрический ток. Если же через термоэлемент пропускать ток от постороннего источника, то на одном из его контактов происходит поглощение, а на другом - выделение тепла.

При обычной организации процесса, всякий электродвигатель потребляет ток и производит колебательные возмущения в окружающей среде, в эфире. То что называется индуктивность. Эти неизбежные возмущения среды обычно никак не используются. На них принято не обращать внимания, пока они никому не мешают. Между тем, следует понимать, что затраты энергии, питание, которое необходимо электродвигателю, как раз и вызываются тем, что электродвигатель работает не в абсолютной пустоте, а в среде и что на создание колебательных возмущений в среде как раз и расходуется подавляющая часть энергии питающей электродвигатель. Тех самых колебательных возмущений на которые принято закрывать глаза.

Здесь заключается самый важный момент. Его необходимо подчеркнуть. Потери энергии при работе всякого электродвигателя связаны не с трением ротора, не с сопротивлением воздуха, а с потерями индуктивности, т.е. с "вязкостью" эфира по отношению к вращающимся электромагнитным частям двигателя. Неподвижный (относительно) эфир раскручивается электродвигателем, в нем возникают концентрические волны расходящиеся во все стороны. При работе электродвигателя эти потери составляют более 90% от всех его потерь.

СХЕМА ПОТЕРЬ ЭНЕРГИИ В ОБЫЧНОМ ЭЛЕКТРОДВИГАТЕЛЕ

Что сделал Тесла. Тесла понял, что электродвигатель который неизбежно "гонит волны" в эфире не самое оптимальное устройство для этой цели. Понятно, что колебания в 30 Гц (1800 об./мин.) не сильно гармонируют с частотами, которые легко поддерживаются средой. 30 Гц. слишком низкая частота, для получения резонанса в такой среде как эфир.

ВЧ генератору, который в резонансе с эфиром, для нормальной работы требуется минимум энергии. Той энергии, которой его снабжает электродвигатель ему хватает с избытком. Электродвигатель же использует не энергию ВЧ генератора, а энергию резонансно накачанной стоячей волны в Эфире.

Принцип работы электродвигателя в схеме, использованной Теслой.

Естественно, что такой электродвигатель будет еще и охлаждаться. Двигатель требующий питания нагревается от сопротивления среды, которую ему приходится раскручивать. Здесь же среду раскручивать не надо. Наоборот сама среда раскручивает двигатель, из которого, как следствие, истекает ток. Никакого колдовства и мистики в этом нет. Всего лишь разумная организация процесса.

(с) 1998-2003 Рус Эвенс

Понравилось? Лайкни нас на Facebook